Your browser doesn't support javascript.
loading
Stress-Dependent Optical Extinction in Low-Pressure Chemical Vapor Deposition Silicon Nitride Measured by Nanomechanical Photothermal Sensing.
Kanellopulos, Kostas; West, Robert G; Emminger, Stefan; Martini, Paolo; Sauer, Markus; Foelske, Annette; Schmid, Silvan.
Afiliación
  • Kanellopulos K; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • West RG; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • Emminger S; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • Martini P; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • Sauer M; Analytical Instrumentation Center, TU Wien, 1060 Vienna, Austria.
  • Foelske A; Analytical Instrumentation Center, TU Wien, 1060 Vienna, Austria.
  • Schmid S; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
Nano Lett ; 24(36): 11262-11268, 2024 Sep 11.
Article en En | MEDLINE | ID: mdl-39213585
ABSTRACT
Understanding optical absorption in silicon nitride is crucial for cutting-edge technologies like photonic integrated circuits, nanomechanical photothermal infrared sensing and spectroscopy, and cavity optomechanics. Yet, the origin of its strong dependence on the film deposition and fabrication process is not fully understood. This Letter leverages nanomechanical photothermal sensing to investigate optical extinction κext at a 632.8 nm wavelength in low-pressure chemical vapor deposition (LPCVD) SiN strings across a wide range of deposition-related tensile stresses (200-850 MPa). Measurements reveal a reduction in κext from 103 to 101 ppm with increasing stress, correlated to variations in Si/N content ratio. Within the band-fluctuations framework, this trend indicates an increase of the energy bandgap with the stress, ultimately reducing absorption. Overall, this study showcases the power and simplicity of nanomechanical photothermal sensing for low absorption measurements, offering a sensitive, scattering-free platform for material analysis in nanophotonics and nanomechanics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Austria