Your browser doesn't support javascript.
loading
Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes.
García-Arribas, Aritz B; Ibáñez-Freire, Pablo; Carlero, Diego; Palacios-Alonso, Pablo; Cantero-Reviejo, Miguel; Ares, Pablo; López-Polín, Guillermo; Yan, Han; Wang, Yan; Sarkar, Soumya; Chhowalla, Manish; Oksanen, Hanna M; Martín-Benito, Jaime; de Pablo, Pedro J; Delgado-Buscalioni, Rafael.
Afiliación
  • García-Arribas AB; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Ibáñez-Freire P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Carlero D; Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología CSIC, Madrid, 28049, Spain.
  • Palacios-Alonso P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Cantero-Reviejo M; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Ares P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • López-Polín G; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Yan H; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
  • Wang Y; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
  • Sarkar S; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
  • Chhowalla M; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
  • Oksanen HM; Faculty of Biological and Environmental Sciences, Vijkki Biocenter, University of Helsinki, Helsinki, 00014, Finland.
  • Martín-Benito J; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • de Pablo PJ; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
  • Delgado-Buscalioni R; Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Adv Sci (Weinh) ; : e2404186, 2024 Sep 04.
Article en En | MEDLINE | ID: mdl-39231361
ABSTRACT
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: España