Your browser doesn't support javascript.
loading
Unit information Dirichlet process prior.
Gu, Jiaqi; Yin, Guosheng.
Afiliación
  • Gu J; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, United States.
  • Yin G; Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, 999077, China.
Biometrics ; 80(3)2024 Jul 01.
Article en En | MEDLINE | ID: mdl-39248120
ABSTRACT
Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Método de Montecarlo / Cadenas de Markov / Modelos Estadísticos / Teorema de Bayes Límite: Humans Idioma: En Revista: Biometrics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Método de Montecarlo / Cadenas de Markov / Modelos Estadísticos / Teorema de Bayes Límite: Humans Idioma: En Revista: Biometrics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos