Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.560
Filtrar
1.
J Nat Med ; 78(4): 1057-1070, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39158815

RESUMO

Resin glycosides are characteristic of plants of the Convolvulaceae family and are well-known purgative ingredients in crude drugs, such as Rhizoma Jalapae, Orizaba Jalapa Tuber, and Pharbitidis Semen, which are used in traditional medicine and derived from plants belonging to this family. Isolated resin glycosides have demonstrated diverse biological activities, including antibacterial, ionophoric, anti-inflammatory, antiviral, and multidrug-resistance-modulating properties, as well as cytotoxicity against cancer cells. These compounds consist of hydroxyl fatty acid oligoglycosides (glycosidic acids), with portions of the saccharide moieties acylated with some organic acids to form the core structure. This study investigated the glycosidic acid components of a crude resin glycoside fraction obtained from a methanolic extract of Ipomoea alba L. seeds (Convolvulaceae). Eleven new glycosidic acid methyl esters and one known methyl ester were isolated from a glycosidic acid fraction treated with trimethylsilyldiazomethane in hexane. Their structures were determined using acidic hydrolysis and electrospray ionization-time of fight mass spectrometry and NMR spectral analyses. These compounds are penta-, tetra-, or triglycosides, with methyl 11S-hydroxytetradecanoate or methyl 11S-hydroxyhexadecanoate as the aglycone. Although D-quinovose and L-rhamnose are common monosaccharide components, the remaining monosaccharides are D-glucose, D-xylose, or D-fucose. The crude resin glycoside fraction showed non-negligible cytotoxicity against HL-60 human promyelocytic leukemia cells.


Assuntos
Glicosídeos , Ipomoea , Extratos Vegetais , Resinas Vegetais , Sementes , Ipomoea/química , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Resinas Vegetais/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química , Estrutura Molecular , Ésteres/química , Ésteres/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
2.
Int J Biol Macromol ; 278(Pt 4): 135076, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214834

RESUMO

In this work, shellac and its crosslinking were studied to produce paper straws for the application of liquid products. Commercial paper straws are not durable for liquid foods due to their hygroscopic nature, and thus, they find it challenging to replace single-use plastics. Shellac is a naturally occurring resin utilized as an adhesive and water-resistant coating over the paper straw. Shellac was cured at 125 °C, 150 °C, 175 °C, and 200 °C, and it was crosslinked in about 210 min, 150 min, 60 min, and 30 min respectively and studied for kinetics. The crosslinking of shellac produced a thermally stable material. Compared to commercial paper straws, these paper shellac straws exhibited high bending stiffness (1356.11 Nmm), tensile strength (13,74 MPa), flexural strength (21.72 MPa), and compression strength (24.99 MPa). Moreover, the paper shellac straws didn't bend in wet conditions under load for up to one day, while the commercial paper straw bends in 8 min. Therefore, paper straws with shellac can replace plastic-based straws for a sustainable future.


Assuntos
Celulose , Papel , Resistência à Tração , Água , Celulose/química , Cinética , Água/química , Resinas Vegetais/química , Temperatura
3.
Int J Biol Macromol ; 278(Pt 3): 134921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173788

RESUMO

Recently, the utilization of the cellulose to fabricate the multifunctional materials with aim to replace the petroleum-based product, is receiving significant attentions. However, the development of cellulose-based multifunctional materials with high mechanical strength and temperature resistance is still a challenge. Herein, the intrinsic feature and property of cellulose and rosin were creatively employed to fabricate a novel cellulose-rosin based poly(esterimide) (PEI) by esterification reaction and imidization reaction, and the obtained cellulose-rosin derived PEI exhibits superior thermal stability. Then the as-prepared cellulose-rosin derived PEI was dissolved in polymerizable deep eutectic solvents (PDES) and in-situ formed the ionic conductive elastomer (ICE) with via UV-induced polymerization. These cellulose-rosin based ICE exhibited excellent mechanical properties, solvent resistance, and temperature tolerance. By adjusting the mass ratio of cellulose-rosin derived PEI and PDES, the as-prepared liquid-free ICE functions as UV shadowless adhesive and wearable sensors. The bonding strength of UV shadowless adhesive could 1.52 MPa, which could be applied to fix the broken glass toy models. Furthermore, wearable sensors based those ICE could monitor the large and subtle movements even under extreme environmental condition, such as being soaked in organic solvent (such as tetrahydrofuran) or at low/high temperature (-25 °C or 80 °C). This work opens a new avenue for the next-generation of multifunctional ICE.


Assuntos
Adesivos , Celulose , Elastômeros , Resinas Vegetais , Solventes , Temperatura , Celulose/química , Resinas Vegetais/química , Elastômeros/química , Adesivos/química , Solventes/química , Raios Ultravioleta , Condutividade Elétrica , Dispositivos Eletrônicos Vestíveis
4.
Int J Biol Macromol ; 278(Pt 3): 134935, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179088

RESUMO

For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.


Assuntos
Antineoplásicos , Antioxidantes , Doxorrubicina , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Resinas Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Células MCF-7 , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico
5.
PLoS One ; 19(8): e0305003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116109

RESUMO

The latex of Ipomoea (Convolvulaceae) is a source of a special kind of acylsugars called resin glycosides, which are highly appreciated because of their biological activities (i.e. laxative, antimicrobial, cytotoxic etc.). Most research has been conducted in perennials with tuberous roots, where resin glycosides are stored. However, their content and variation are unknown in annual vines that lack this type of root, such as in the case of Ipomoea parasitica. This species contains research/biological and human value through its fast growth, survival in harsh environments, and employment in humans for mental/cognitive improvements. These qualities make I. parasitica an ideal system to profile resin glycosides and their variations in response to edaphoclimate. Topsoil samples (0-30 cm depth) and latex from petioles of I. parasitica were collected in two localities of central Mexico. The latex was analyzed through UHPLC-ESI-QTOF, and soil physico-chemical characteristics, the rainfall, minimum, average, and maximum temperatures were recorded. We also measured canopy (%), rockiness (%), and plant cover (%). A Principal Component Analysis was conducted to find associations between edaphoclimate and the resin glycosides. Forty-four resin glycosides were found in the latex of I. parasitica. Ten correlated significantly with three components (47.07%) and contained tetrasaccharide, pentasaccharide, and dimers of tetrasaccharide units. Five resin glycosides were considered constitutive because they were in all the plants. However, exclusive molecules to each locality were also present, which we hypothesize is in response to significant microhabitat conditions found in this study (temperature, clay content, pH, and potassium). Our results showed the presence of resin glycosides in I. parasitica latex and are the basis for experimentally testing the effect of the conditions above on these molecules. However, ecological, molecular, and biochemical factors should be considered in experiments designed to produce these complex molecules.


Assuntos
Glicosídeos , Ipomoea , Resinas Vegetais , Glicosídeos/química , Ipomoea/química , Resinas Vegetais/química , México , Látex/química , Solo/química
6.
Int J Biol Macromol ; 277(Pt 2): 134204, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069044

RESUMO

Quercetin possesses multiple biological activities. To achieve efficient colon-specific release of quercetin, new composite nanofibers were developed by coating pH-responsive shellac on hydrophilic gelatin through coaxial electrospinning. These composite nanofibers contained bead-like structures. The encapsulation efficiency (87.6-98.5 %) and loading capacity (1.4-4.1 %) varied with increasing the initial quercetin addition amount (2.5-7.5 %). FTIR, XRD, and TGA results showed that the quercetin was successfully encapsulated in composite nanofibers in an amorphous state, with interactions occurring among quercetin, gelatin, and shellac. Composite nanofibers had pH-responsive surface wettability due to the shellac coating. In vitro digestion experiments showed that these composite nanofibers were highly stable in the upper gastrointestinal tract, with quercetin release ranging from 4.75 % to 12.54 %. In vivo organ distribution and pharmacokinetic studies demonstrated that quercetin could be sustainably released in the colon after oral administration of composite nanofibers. Besides, the enhanced anticancer activity of composite nanofibers was confirmed against HCT-116 cells by analyzing their effect on cell viability, cell cycle, and apoptosis. Overall, these novel composite nanofibers could deliver efficiently quercetin to the colon and achieve its sustained release, thus potential to regulate colon health. This system is also helpful in delivering other bioactives to the colon and exerting their functional effects.


Assuntos
Antineoplásicos , Colo , Gelatina , Nanofibras , Quercetina , Quercetina/química , Quercetina/farmacologia , Quercetina/farmacocinética , Quercetina/administração & dosagem , Nanofibras/química , Gelatina/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Colo/metabolismo , Colo/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos , Células HCT116 , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Ratos , Resinas Vegetais
7.
Food Chem ; 458: 140528, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047322

RESUMO

Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.


Assuntos
Dióxido de Carbono , Emulsões , Nanopartículas , Quercetina , Resinas Vegetais , Tensoativos , Emulsões/química , Tensoativos/química , Dióxido de Carbono/química , Quercetina/química , Resinas Vegetais/química , Nanopartículas/química , Composição de Medicamentos , Tamanho da Partícula
8.
Int J Biol Macromol ; 277(Pt 1): 134177, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067730

RESUMO

Soy protein adhesives (SPI) exhibit broad prospects in substituting aldehyde-based resin due to the economic and environmental-friendly characteristics, but still face a challenge because of the dissatisfied bonding strength and terrible water resistance. Herein, prompted by organic-inorganic hierarchy, a multifunctional and novel soy protein adhesive (SPI-RAE-TiO2) consisting of rosin acid emulsion (RAE) and TiO2 nanoparticles (TiO2) were proposed. In comparison with original SPI, the dry and wet shear strengths of modified adhesive reached 2.01 and 1.21 MPa, respectively, which were increased by 130 % and 200 %. Furthermore, SPI-6RAE-0.5TiO2 was selected as the best proportion via the method of response surface methodology (RSM). What's more, SPI-6RAE-0.5TiO2 adhesive demonstrated prominent coating performance in both dry and wet surface conditions. Meanwhile, SPI-6RAE-0.5TiO2 adhesive possessed excellent mildew resistance and antibacterial ability with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), reflecting the antibacterial rates 97.71 % and 98.16 %, respectively. In addition, SPI-6RAE-0.5TiO2 adhesive also exhibited the outstanding green features such as the reduction of formaldehyde pollution and greenhouse effect through Life Cycle Assessment (LCA). Thus, this work provided a novel and functional approach to design multifunctional, superior-property and low-carbon footprint soy protein adhesive.


Assuntos
Adesivos , Emulsões , Resinas Vegetais , Proteínas de Soja , Titânio , Titânio/química , Proteínas de Soja/química , Resinas Vegetais/química , Emulsões/química , Adesivos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
9.
J Forensic Sci ; 69(5): 1918-1925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992862

RESUMO

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDV, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.


Assuntos
Canabinoides , Cannabis , Índia , Cannabis/química , Canabinoides/análise , Humanos , Cromatografia Líquida de Alta Pressão , Resinas Vegetais/química , Himalaia
10.
Chin J Nat Med ; 22(7): 643-653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39059833

RESUMO

The resin of Ferula sinkiangensis has been traditionally utilized for treating gastrointestinal disorders, inflammation, tumors, various cancers, and alopecia areata. The primary bioactive constituents, sesquiterpene coumarins, have demonstrated notable therapeutic potential against neuroinflammation. In this study, a structure-guided fractionation method was used to isolate nine novel sesquiterpene coumarins from the resin of F. sinkiangensis. These compounds were characterized and structurally elucidated using comprehensive physicochemical and spectroscopic techniques, including calculated electronic circular dichroism (ECD). Anti-neuroinflammatory assays revealed that compounds 2, 3, and 6 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values ranging from 1.63 to 12.25 µmol·L-1.


Assuntos
Anti-Inflamatórios , Cumarínicos , Ferula , Microglia , Óxido Nítrico , Sesquiterpenos , Ferula/química , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Cumarínicos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Microglia/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Animais , Camundongos , Linhagem Celular , Lipopolissacarídeos/farmacologia , Resinas Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999095

RESUMO

Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Própole , Compostos Orgânicos Voláteis , Própole/química , Nova Zelândia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Abelhas/química , Animais , Resinas Vegetais/química
12.
Fitoterapia ; 177: 106068, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857833

RESUMO

Rosin, a natural resin obtained from conifer trees, has a long history of use in traditional folk medicine for treating abscesses, wounds, carbuncles, and burns, etc. It has been employed in ancient Egypt, China, Nordic countries, and Turkey as a therapeutic remedy. This comprehensive review examines the traditional uses, phytochemistry, and pharmacology of rosin, and it provides a critical update on current knowledge of rosin and identifies potential therapeutic opportunities. The chemical composition of rosin is known to vary depending on factors such as botanical sources, geographical locations, and processing methods. Rosin acids, which account for over 90% of its primary chemical constituents, have been identified as the predominant compounds in rosin. Researchers have isolated approximately 50 compounds from rosin, with terpenoid rosin acids being the most prevalent. Furthermore, the review highlights the potential pharmacological activities of rosin and its constituents. Crude extracts and isolated rosin acids have demonstrated promising properties, including antimicrobial, anti-inflammatory, anti-tumor, insecticidal, wound healing, and anti-obesity effects. However, the review emphasizes that further research is needed, as existing studies are predominantly preliminary. Many of the reported bioactivities require further verification, and the underlying mechanisms of action remain largely unexplored. In conclusion, rosin has been extensively used in traditional medicine across different cultures, and its chemical composition has been confirmed to a significant extent. The pharmacological activities observed in crude extracts and isolated rosin acids support its traditional uses. Nevertheless, additional research is necessary to deepen our understanding of the pharmacological mechanisms underlying its effects.


Assuntos
Medicina Tradicional , Compostos Fitoquímicos , Resinas Vegetais , Resinas Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Estrutura Molecular , Humanos , Animais , Traqueófitas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
13.
Food Res Int ; 188: 114475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823838

RESUMO

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Assuntos
Quitosana , Nanocompostos , Resinas Vegetais , Solubilidade , Ceras , Óxido de Zinco , Quitosana/química , Óxido de Zinco/química , Nanocompostos/química , Resinas Vegetais/química , Ceras/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Permeabilidade
14.
Int J Biol Macromol ; 273(Pt 2): 133152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878928

RESUMO

The design of polymer-based composites possessing good mechanical and self-healing properties remains a challenge in the development of high-performance self-healing materials. In this study, we used two-dimensional polyamide (2DPA), biomass rosin ester, and a dynamic crosslinking agent poly (urethane-urea) as raw materials, and prepared biomass rosin-based composites via in situ polymerization. The composites with 1 wt% 2DPA exhibited excellent self-healing properties (self-healing efficiency of 94 % after 24 h at 80 °C) and mechanical properties (tensile strength = 7.8 MPa). Moreover, the composites were applied to anticorrosion and antimicrobial coatings, which possessed excellent anticorrosion and antimicrobial properties. This study provides a new strategy for developing high-performance bio-based self-healing composites.


Assuntos
Anti-Infecciosos , Nylons , Resinas Vegetais , Nylons/química , Resinas Vegetais/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Resistência à Tração , Poliuretanos/química
15.
Int J Biol Macromol ; 271(Pt 2): 132623, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845255

RESUMO

Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.


Assuntos
Resinas Vegetais , Humanos , Resinas Vegetais/química , Sistemas de Liberação de Medicamentos , Zeína/química , Nanopartículas/química , Hidrogéis/química , Nanofibras/química , Animais , Disponibilidade Biológica
16.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792084

RESUMO

Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.


Assuntos
Cistus , Hipoglicemiantes , Fármacos Neuroprotetores , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Humanos , Cistus/química , Resinas Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proliferação de Células/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação
17.
Carbohydr Res ; 540: 109142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718742

RESUMO

Resin glycosides act as laxatives in crude drugs derived from plants of the Convolvulaceae family. These compounds have exhibited antibacterial, ionophoric, anti-inflammatory, antiviral, and multidrug resistance-modulating properties, as well as cytotoxicity against cancer cells. This study investigated the organic acid, hydroxyl fatty acid, monosaccharide, and glycosidic acid components of the crude resin glycoside fraction obtained from the methanol extract of Ipomoea alba L. (Convolvulaceae) seeds, which was subjected to alkaline and acidic hydrolysis. The alkaline hydrolysis yielded acetic, isobutyric, (E)-2-methylbut-2-enoic, and 2S-methyl-3S-hydroxybutyric acids as organic acid components, along with a glycosidic acid fraction. The acidic hydrolysis of the glycosidic acid fraction resulted in the isolation of 11S-hydroxytetradecanoic and 11S-hydroxyhexadecanoic acids as hydroxyl fatty acid components, as well as d-glucose, d-quinovose, d-fucose, d-xylose, and l-rhamnose as monosaccharide components. In addition, 10 new glycosidic acid methyl esters were isolated from the glycosidic acid fraction treated with trimethylsilyldiazomethane-hexane, along with one known glycosidic acid methyl ester. Of these, eight compounds contained new glycans. Four of these compounds were unusual natural glycosides with four glycosidic linkages to one monosaccharide. Their structures were determined using MS and NMR spectral analyses, which provided valuable insights into the unique glycosidic composition of I. alba seeds.


Assuntos
Glicosídeos , Ipomoea , Sementes , Ipomoea/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Sementes/química , Resinas Vegetais/química , Hidrólise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação
18.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743441

RESUMO

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Assuntos
Portadores de Fármacos , Hidrogéis , Inseticidas , Ivermectina , Resinas Vegetais , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/toxicidade , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/farmacologia , Resinas Vegetais/química , Portadores de Fármacos/química , Temperatura , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Mariposas/efeitos dos fármacos , Rosaceae/química , Zinco/química , Zinco/farmacologia , Resinas Acrílicas
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124384, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701576

RESUMO

The bioactive compounds Acetyl-11-keto-ß-boswellic acid (AKBA) and 11-keto-ß-boswellic acid (KBA), found in the resin of the Boswellia tree, exhibit anti-inflammatory properties, rendering Boswellia resin an intriguing natural medicinal products. However, the content of boswellic acids varies across different Boswellia species and proper knowledge of its species-dependent nature, as well as alternatives to the resource- and time-intensive HPLC analysis, are lacking. Here we present a comprehensive investigation into the boswellic acid content of seven Boswellia species from ten countries and introduce a novel and non-destructive Near-Infrared spectroscopy method for predicting boswellic acid concentrations in solid resin samples. The HPLC-UV reference analysis revealed AKBA concentrations of up to 7.27 % (w/w) with KBA concentrations reaching up to 1.28 % (w/w). Principal Component Analysis of the HPLC and NIR spectroscopy data unveiled species-specific variations, facilitating differentiation based on boswellic acid content, characteristic chromatograms and NIR spectra. Using the HPLC-UV quantification as reference, we developed a Partial Least Squares regression model based on NIR spectra of the resin samples. This model demonstrated highly satisfactory predictive capabilities for AKBA content, achieving a root mean square error of prediction of 0.74 % (w/w) and an R2val of 0.79 in independent test set validation. Although the model was less effective for predicting KBA content, it still offered valuable estimates. The spectroscopic method introduced in this study provides a cost-effective and solvent-free approach for predicting boswellic acid content, demonstrating the potential for application in non-laboratory settings through the use of miniaturized NIR spectrometers. Consequently, this method aligns well with the principles of green chemistry and addresses the growing demand for alternative analytical techniques.


Assuntos
Boswellia , Análise de Componente Principal , Resinas Vegetais , Espectroscopia de Luz Próxima ao Infravermelho , Triterpenos , Boswellia/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Triterpenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Resinas Vegetais/química , Resinas Vegetais/análise , Análise Multivariada , Especificidade da Espécie
20.
Fitoterapia ; 176: 106000, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729248

RESUMO

Five new characteristic cembrane-type diterpenoids (olibacartiols A-E, 1-5) were acquired from the gum resin of Boswellia carterii. The structures of these diterpenoids were characterized by detailed spectroscopic analysis, and compounds 1-3 were unambiguously confirmed by single-crystal X-ray diffraction experiments. The anti-inflammatory activities of the isolated compounds were evaluated using LPS-induced BV2 cell model and compounds 2-5 showed moderate NO inhibitory effects with IC50 values of 8.84 ± 1.02, 9.82 ± 1.95, 9.75 ± 2.24, and 7.39 ± 1.24 µM, respectively.


Assuntos
Anti-Inflamatórios , Boswellia , Diterpenos , Óxido Nítrico , Compostos Fitoquímicos , Resinas Vegetais , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Boswellia/química , Óxido Nítrico/metabolismo , Estrutura Molecular , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Resinas Vegetais/química , Camundongos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Linhagem Celular , China , Gomas Vegetais/química , Gomas Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA