Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.090
Filtrar
1.
Commun Biol ; 7(1): 1113, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256547

RESUMO

Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-ß oligomers (Aß), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-ß (Aß) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sinapses/metabolismo , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Neurônios/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Humanos , Presenilina-1/metabolismo , Presenilina-1/genética , Camundongos Endogâmicos C57BL , Fosfotransferases
2.
Nat Commun ; 15(1): 7596, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217147

RESUMO

Machine learning provides efficient ways to map compound-kinase interactions. However, diverse bioactivity data types, including single-dose and multi-dose-response assay results, present challenges. Traditional models utilize only multi-dose data, overlooking information contained in single-dose measurements. Here, we propose a machine learning methodology for compound-kinase activity prediction that leverages both single-dose and dose-response data. We demonstrate that our two-stage approach yields accurate activity predictions and significantly improves model performance compared to training solely on dose-response labels. This superior performance is consistent across five diverse machine learning methods. Using the best performing model, we carried out extensive experimental profiling on a total of 347 selected compound-kinase pairs, achieving a high hit rate of 40% and a negative predictive value of 78%. We show that these rates can be improved further by incorporating model uncertainty estimates into the compound selection process. By integrating multiple activity data types, we demonstrate that our approach holds promise for facilitating the development of training activity datasets in a more efficient and cost-effective way.


Assuntos
Aprendizado de Máquina , Humanos , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Fosfotransferases/metabolismo , Algoritmos , Descoberta de Drogas/métodos
3.
Proc Natl Acad Sci U S A ; 121(33): e2400862121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106311

RESUMO

Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ligantes , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Peptídeos/metabolismo , Peptídeos/química , Evolução Molecular , Modelos Moleculares , Transdução de Sinais , Fosfotransferases
4.
Molecules ; 29(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202847

RESUMO

Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.


Assuntos
Monofosfato de Citidina , Drosophila melanogaster , Animais , Fosforilação , Especificidade por Substrato , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Fosfotransferases/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Mutação , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Desoxicitidina Quinase/química
5.
Elife ; 132024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984616

RESUMO

The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.


Assuntos
Proteínas Quinases , Regulação Alostérica , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Fosfotransferases/metabolismo , Fosfotransferases/química
6.
Plant Signal Behav ; 19(1): 2370706, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38905329

RESUMO

Extracellular ATP (eATP) orchestrates vital processes in plants, akin to its role in animals. P2K1 is a crucial receptor mediating eATP effects. Immunoprecipitation tandem mass spectrometry data highlighted FERONIA's significant interaction with P2K1, driving us to explore its role in eATP signaling. Here, we investigated putative P2K1-interactor, FERONIA, which is a versatile receptor kinase pivotal in growth and stress responses. We employed a FERONIA loss-of-function mutant, fer-4, to dissect its effects on eATP signaling. Interestingly, fer-4 showed distinct calcium responses compared to wild type, while eATP-responsive genes were constitutively upregulated in fer-4. Additionally, fer-4 displayed insensitivity to eATP-regulated root growth and reduced cell wall accumulation. Together, these results uncover a role for FERONIA in regulating eATP signaling. Overall, our study deepens our understanding of eATP signaling, revealing the intricate interplay between P2K1 and FERONIA impacting the interface between growth and defense.


Assuntos
Proteínas de Arabidopsis , Raízes de Plantas , Transdução de Sinais , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfotransferases , Proteínas Serina-Treonina Quinases
7.
Neuromolecular Med ; 26(1): 22, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824254

RESUMO

Stroke is a significant public health issue, and research has consistently focused on studying the mechanisms of injury and identifying new targets. As a CDK5 activator, p39 plays a crucial role in various diseases. In this article, we will explore the role and mechanism of p39 in cerebral ischemic injury. We measured the level of p39 using western blot and QPCR at various time points following cerebral ischemia-reperfusion (I/R) injury. The results indicated a significant reduction in the level of p39. TTC staining and behavioral results indicate that the knockout of p39 (p39KO) provides neuroprotection in the short-term. Interestingly, the behavioral dysfunction in p39KO mice was exacerbated after the repair phase of I/R. Further study revealed that this deterioration may be due to demyelination induced by elevated p35 levels. In summary, our study offers profound insights into the significance of p39 in both the acute and repair stages of ischemic injury recovery and a theoretical foundation for future therapeutic drug exploration.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/genética , Infarto da Artéria Cerebral Média/patologia , Fosfotransferases , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
8.
Plant Physiol ; 196(1): 651-666, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38748589

RESUMO

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.


Assuntos
Arabidopsis , Imunidade Vegetal , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Mutação/genética , Fosfotransferases , Peptídeos e Proteínas de Sinalização Intracelular
9.
J Chem Inf Model ; 64(10): 4009-4020, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38751014

RESUMO

Drug discovery pipelines nowadays rely on machine learning models to explore and evaluate large chemical spaces. While including 3D structural information is considered beneficial, structural models are hindered by the availability of protein-ligand complex structures. Exemplified for kinase drug discovery, we address this issue by generating kinase-ligand complex data using template docking for the kinase compound subset of available ChEMBL assay data. To evaluate the benefit of the created complex data, we use it to train a structure-based E(3)-invariant graph neural network. Our evaluation shows that binding affinities can be predicted with significantly higher precision by models that take synthetic binding poses into account compared to ligand- or drug-target interaction models alone.


Assuntos
Aprendizado de Máquina , Simulação de Acoplamento Molecular , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Redes Neurais de Computação , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Descoberta de Drogas/métodos , Ligação Proteica , Conformação Proteica , Fosfotransferases/metabolismo , Fosfotransferases/química , Fosfotransferases/antagonistas & inibidores
10.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682237

RESUMO

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Assuntos
Diferenciação Celular , Quinase 5 Dependente de Ciclina , Metformina , Fator de Crescimento Neural , Neurônios , Receptor trkA , Animais , Metformina/farmacologia , Ratos , Células PC12 , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fosfotransferases
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 565-570, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684302

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genetic etiology of a child with Multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). METHODS: Clinical data of a 2-year-old boy who had presented at the Affiliated Hospital of Qingdao University in March 2023 for "intermittent limb twitching for 2 years" was collected. Peripheral blood samples were collected from the child and his parents for whole-exome sequencing (WES). Candidate variants were verified by Sanger sequencing and bioinformatic analysis based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: The child had manifested with distinctive facial features, limb deformities, hypotonia, motor and intellectual delays, and epileptic seizures. WES revealed that he has harbored compound heterozygous variants of the PIGN gene, namely c.963G>A (p.Q321=) and c.994A>T (p.I332F), which were inherited from his phenotypically normal mother and father, respectively. Based on the ACMG guidelines, the c.963G>A was classified as a pathogenic variant (PVS1+PM2_Supporting+PM3), whilst the c.994A>T was classified as a variant of uncertain significance (PM2_Supporting+PP3). CONCLUSION: Above discovery has expanded the mutational spectrum of the PIGN gene variants associated with MCAHS1, which may facilitate delineation of its genotype-phenotype correlation.


Assuntos
Anormalidades Múltiplas , Sequenciamento do Exoma , Hipotonia Muscular , Fosfotransferases , Humanos , Masculino , Pré-Escolar , Hipotonia Muscular/genética , Anormalidades Múltiplas/genética , Convulsões/genética , Mutação , Fenótipo , Proteínas de Membrana/genética , Testes Genéticos , Deficiência Intelectual/genética
12.
Mol Plant ; 17(5): 772-787, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581129

RESUMO

The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácidos Indolacéticos , Oxirredução , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo
13.
Biochem Biophys Res Commun ; 714: 149966, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657448

RESUMO

U47 phosphorylation (Up47) is a novel tRNA modification discovered recently; it can confer thermal stability and nuclease resistance to tRNAs. U47 phosphorylation is catalyzed by Archaeal RNA kinase (Ark1) in an ATP-dependent manner. However, the structural basis for tRNA and/or ATP binding by Ark1 is unclear. Here, we report the expression, purification, and crystallization studies of Ark1 from G. acetivorans (GaArk1). In addition to the Apo-form structure, one GaArk1-ATP complex was also determined in atomic resolution and revealed the detailed basis for ATP binding by GaArk1. The GaArk1-ATP complex represents the only ATP-bound structure of the Ark1 protein. The majority of the ATP-binding residues are conserved, suggesting that GaArk1 and the homologous proteins share similar mechanism in ATP binding. Sequence and structural analysis further indicated that endogenous guanosine will only inhibit the activities of certain Ark1 proteins, such as Ark1 from T. kodakarensis.


Assuntos
Archaeoglobus , Modelos Moleculares , Fosfotransferases , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Archaeoglobus/enzimologia , Fosfotransferases/química
14.
Plant Sci ; 343: 112085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588983

RESUMO

Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.


Assuntos
Proteínas de Plantas , Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Peptídeos , Fosfotransferases/metabolismo , Desenvolvimento Vegetal
15.
PLoS One ; 19(4): e0298747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635549

RESUMO

Human kinases play essential and diverse roles in the cellular activities of maintaining homeostasis and growth. Genetic mutations in the genes encoding the kinases (or phosphotransferases) have been linked with various types of cancers. In this study, we cataloged mutations in 500 kinases genes in >65,000 individuals of global populations from the Human Genetic Diversity Project (HGDP) and ExAC databases, and assessed their potentially deleterious impact by using the in silico tools SIFT, Polyphen2, and CADD. The analysis highlighted 35 deleterious non-synonymous SNVs in the ExAC and 5 SNVs in the HGDP project. Notably, a higher number of deleterious mutations was observed in the Non-Finnish Europeans (26 SNVs), followed by the Africans (14 SNVs), East Asians (13 SNVs), and South Asians (12 SNVs). The gene set enrichment analysis highlighted NTRK1 and FGFR3 being most significantly enriched among the kinases. The gene expression analysis revealed over-expression of NTRK1 in liver cancer, whereas, FGFR3 was found over-expressed in lung, breast, and liver cancers compared to their expression in the respective normal tissues. Also, 13 potential drugs were identified that target the NTRK1 protein, whereas 6 potential drugs for the FGFR3 target were identified. Taken together, the study provides a framework for exploring the predisposing germline mutations in kinases to suggest the underlying pathogenic mechanisms in cancers. The potential drugs are also suggested for personalized cancer management.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Mutação , Mutação em Linhagem Germinativa , Perfilação da Expressão Gênica , Fosfotransferases/genética
16.
Sci Rep ; 14(1): 6518, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499693

RESUMO

Family with sequence similarity 20, member A (FAM20A) is a pseudo-kinase in the secretory pathway and is essential for enamel formation in humans. Here we examine if FAM20A is a membrane-associated protein. We show that the full-length FAM20A can be purified from HEK293 cells transfected with a FAM20A-expresing construct. Further, it is only found in the membrane fraction, but not in the soluble fraction, of cell lysate. Consistently, it is not secreted out of the expressing cells. Moreover, it is co-localized with GM130, a cis-Golgi network marker, and membrane topology analysis indicates that it has its C-terminus oriented towards the lumen of the organelle. Our results support that FAM20A is a Type II transmembrane protein within the secretory compartments.


Assuntos
Proteínas do Esmalte Dentário , Proteínas de Membrana , Humanos , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfotransferases/metabolismo , Complexo de Golgi/metabolismo , Proteínas do Esmalte Dentário/metabolismo
17.
Int J Biochem Cell Biol ; 170: 106558, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479581

RESUMO

Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.


Assuntos
Fosfotransferases , Proteínas Serina-Treonina Quinases , Fosfotransferases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473785

RESUMO

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Assuntos
Aprendizado Profundo , Humanos , Fosfotransferases , Descoberta de Drogas/métodos , Polifarmacologia , Aprendizado de Máquina
19.
Commun Biol ; 7(1): 321, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480905

RESUMO

Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Proteína 4 Homóloga a Disks-Large , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Quinase 2 de Adesão Focal , Densidade Pós-Sináptica , Fosfotransferases , Ubiquitinação , Isquemia , Ubiquitina
20.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493663

RESUMO

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Assuntos
Oryza , Oryza/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Germinação/genética , Pólen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferases , Nucleotídeos Cíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA