Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68.282
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610275

RESUMO

The design and control of artificial hands remains a challenge in engineering. Popular prostheses are bio-mechanically simple with restricted manipulation capabilities, as advanced devices are pricy or abandoned due to their difficult communication with the hand. For social robots, the interpretation of human intention is key for their integration in daily life. This can be achieved with machine learning (ML) algorithms, which are barely used for grasping posture recognition. This work proposes an ML approach to recognize nine hand postures, representing 90% of the activities of daily living in real time using an sEMG human-robot interface (HRI). Data from 20 subjects wearing a Myo armband (8 sEMG signals) were gathered from the NinaPro DS5 and from experimental tests with the YCB Object Set, and they were used jointly in the development of a simple multi-layer perceptron in MATLAB, with a global percentage success of 73% using only two features. GPU-based implementations were run to select the best architecture, with generalization capabilities, robustness-versus-electrode shift, low memory expense, and real-time performance. This architecture enables the implementation of grasping posture recognition in low-cost devices, aimed at the development of affordable functional prostheses and HRI for social robots.


Assuntos
Atividades Cotidianas , Mãos , Humanos , Extremidade Superior , Aprendizado de Máquina , Postura
2.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610452

RESUMO

Hip-worn accelerometers are commonly used to assess habitual physical activity, but their accuracy in precisely measuring sedentary behavior (SB) is generally considered low. The angle for postural estimation (APE) method has shown promising accuracy in SB measurement. This method relies on the constant nature of Earth's gravity and the assumption that walking posture is typically upright. This study investigated how cardiorespiratory fitness (CRF) and body mass index (BMI) are related to APE output. A total of 3475 participants with adequate accelerometer wear time were categorized into three groups according to CRF or BMI. Participants in low CRF and high BMI groups spent more time in reclining and lying postures (APE ≥ 30°) and less time in sitting and standing postures (APE < 30°) than the other groups. Furthermore, the strongest partial Spearman correlation with CRF (r = 0.284) and BMI (r = -0.320) was observed for APE values typical for standing. The findings underscore the utility of the APE method in studying associations between SB and health outcomes. Importantly, this study emphasizes the necessity of reserving the term "sedentary behavior" for studies wherein the classification of SB is based on both intensity and posture.


Assuntos
Hominidae , Comportamento Sedentário , Humanos , Animais , Postura , Posição Ortostática , Postura Sentada
3.
Int Biomech ; 11(1): 1-5, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38613407

RESUMO

This exploratory study examines the relationship between the eccentric utilization ratio (EUR) and the rate of force development (RFD) in squat jumps (SJ). EUR, a key metric in sports science, compares performance in countermovement jumps (CMJ) and squat jumps (SJ). The study hypothesizes that a higher EUR is associated with a poorer RFD in SJ. Basketball and soccer players, long-distance runners, alongside physical education students (209 men; age: 23.2 ± 4.95 years and 104 women; age: 22.7 ± 4.42 years) participated. The EUR was calculated from jump height, peak force and peak power. The results indicated a small to moderate but significant negative correlation between EUR based on peak force or peak power and RFD in SJ (r = -.41 and -.27), suggesting that a higher EUR might be linked to a diminished ability to rapidly develop force in SJ. Thus, a higher EUR may not indicate superior athletic performance.


Assuntos
Desempenho Atlético , Basquetebol , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Educação Física e Treinamento , Exame Físico , Postura
4.
PeerJ ; 12: e17173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560460

RESUMO

Background: Table tennis is an asymmetric sport involving the powerful forward swing of the upper limbs depends on the solid support of the lower limbs. The foot drive really affects the weight balance and stroke accuracy even though the distance and momentum of the lower limb displacement are limited within a limited range. Given that previous research on table tennis has typically focused on the footwork and stroke performance of professional players, the study aimed to investigate the daily static and dynamic plantar load distribution as well as the centers of gravity balance and rearfoot posture among Taiwanese college elite table tennis players. Methods: This is a cross-sectional study of 70 elite male table tennis players (age: 20.0 ± 0.9 years; height: 173.4 ± 5.1 cm, weight: 67.6 ± 5.3 kg, experience: 10.0 ± 1.6 years) and 77 amateur table tennis players of the same gender (age: 20.1 ± 0.8 years, height: 167.4 ± 4.4 cm, weight: 64.3 ± 4.0 kg, experience: 4.4 ± 1.2 years) from Taiwanese universities. The JC Mat optical plantar pressure analyzer was applied to determine the plantar load distribution along with arch index (AI) and centers of gravity balance. Assessment of rearfoot postural alignment was mainly used to contrast the performance of the centers of gravity balance. Results: The static arch indices of both feet in the elite group were symmetrical and considered normal arches (AI: 0.22 ± 0.07) during their non-training and non-competition daily lives. Their static plantar loads were symmetrically concentrated on the bipedal lateral metatarsals (P < 0.05) as well as shifted to the medial and lateral heels (P < 0.05) and the lateral metatarsals (P < 0.05) during the walking midstance phase. Additionally, the plantar loads were mainly applied to the bipedal medial (P < 0.01) and lateral heels (P < 0.05) during the transitional changes between both states. Elite athletes had symmetrical and evenly distributed centers of gravity on both feet (left: 50.03 ± 4.47%; right: 49.97 ± 4.47%) when standing statically, along with symmetrical rearfoot angles and neutral position of the subtalar joint (left: 2.73 ± 2.30°; right: 2.70 ± 2.32°) even though they were statistically lower than those of the amateur athletes (P < 0.05). Conclusions: The daily static and dynamic foot patterns of Taiwanese college elite table tennis players were characterized by plantar load distribution on the lateral metatarsals and the entire calcaneus along with balanced centers of gravity and normal rearfoot posture. This foot and posture layout outlines the excellent athletic performance of the foot and ankle in professional athletes. Portions of this text were previously published as part of a preprint (https://doi.org/10.21203/rs.3.rs-2993403/v1).


Assuntos
Acidente Vascular Cerebral , Tênis , Humanos , Masculino , Adulto Jovem , Adulto , Estudos Transversais , Universidades , Postura
5.
Sci Rep ; 14(1): 8251, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589504

RESUMO

Investigating acute stress responses is crucial to understanding the underlying mechanisms of stress. Current stress assessment methods include self-reports that can be biased and biomarkers that are often based on complex laboratory procedures. A promising additional modality for stress assessment might be the observation of body movements, which are affected by negative emotions and threatening situations. In this paper, we investigated the relationship between acute psychosocial stress induction and body posture and movements. We collected motion data from N = 59 individuals over two studies (Pilot Study: N = 20, Main Study: N = 39) using inertial measurement unit (IMU)-based motion capture suits. In both studies, individuals underwent the Trier Social Stress Test (TSST) and a stress-free control condition (friendly-TSST; f-TSST) in randomized order. Our results show that acute stress induction leads to a reproducible freezing behavior, characterized by less overall motion as well as more and longer periods of no movement. Based on these data, we trained machine learning pipelines to detect acute stress solely from movement information, achieving an accuracy of 75.0 ± 17.7 % (Pilot Study) and 73.4 ± 7.7 % (Main Study). This, for the first time, suggests that body posture and movements can be used to detect whether individuals are exposed to acute psychosocial stress. While more studies are needed to further validate our approach, we are convinced that motion information can be a valuable extension to the existing biomarkers and can help to obtain a more holistic picture of the human stress response. Our work is the first to systematically explore the use of full-body body posture and movement to gain novel insights into the human stress response and its effects on the body and mind.


Assuntos
Hidrocortisona , Estresse Psicológico , Humanos , Estresse Psicológico/psicologia , Projetos Piloto , Postura , Biomarcadores , Saliva
6.
BMC Pregnancy Childbirth ; 24(1): 253, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589802

RESUMO

BACKGROUND: The objective of this study was to identify and qualify, by means of a three-dimensional kinematic analysis, the postures and movements of obstetricians during a simulated forceps birth, and then to study the association of the obstetricians' experience with the technique adopted. METHOD: Fifty-seven volunteer obstetricians, 20 from the Limoges and 37 from the Poitiers University hospitals, were included in this multi-centric study. They were classified into 3 groups: beginners, intermediates, and experts, beginners having performed fewer than 10 forceps deliveries in real conditions, intermediates between 10 and 100, and experts more than 100. The posture and movements of the obstetricians were recorded between December 2020 and March 2021 using an optoelectronic motion capture system during simulated forceps births. Joint angles qualifying these postures and movements were analysed between the three phases of the foetal traction. These phases were defined by the passage of a virtual point associated with the forceps blade through two anatomical planes: the mid-pelvis and the pelvic outlet. Then, a consolidated ascending hierarchical classification (AHC) was applied to these data in order to objectify the existence of groups of similar behaviours. RESULTS: The AHC distinguished four different postures adopted when crossing the first plane and three different traction techniques. 48% of the beginners adopted one of the two raised posture, 22% being raised without trunk flexion and 26% raised with trunk flexion. Conversely, 58% of the experts positioned themselves in a "chevalier servant" posture (going down on one knee) and 25% in a "squatting" posture before initiating traction. The results also show that the joint movement amplitude tends to reduce with the level of expertise. CONCLUSION: Forceps delivery was performed in different ways, with the experienced obstetricians favouring postures that enabled observation at the level of the maternal perineum and techniques reducing movement amplitude. The first perspective of this work is to relate these different techniques to the traction force generated. The results of these studies have the potential to contribute to the training of obstetricians in forceps delivery, and to improve the safety of women and newborns.


Assuntos
Extração Obstétrica , Obstetra , Gravidez , Humanos , Feminino , Recém-Nascido , Extração Obstétrica/métodos , Parto Obstétrico , Forceps Obstétrico , Postura
7.
Arq Bras Cardiol ; 121(2): e20230483, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38597534

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is a rare inherited neuromuscular disease. At first, cardiac involvement may be asymptomatic. Therefore, assessing patients using non-invasive methods can help detect any changes. OBJECTIVES: Analyze the electrocardiogram (ECG) test and heart rate variability (HRV) of the DMD group and compare the information with that of the age-matched control group. METHODS: A prospective study with 27 male patients with DMD (11.9 years old), who underwent clinical evaluation, ECG, echocardiogram, and Holter monitoring. ECG (200% increase) was assessed by two independent observers. HRV was measured over time (24 h) and in the frequency domain, in the supine and sitting positions. The healthy group consisted of nine patients (11.0 years old). A value of p < 0.05 was considered statistically significant. RESULTS: The mean ejection fraction (EF) was 60% (34 to 71%). The Kappa coefficient for ECG measurements ranged from 0.64 to 1.00. An increase in the R/S ratio in V1 was observed in 25.9% of the subjects, pathological Q wave in 29.6%, and fragmented QRS in 22.2% in inferior/high lateral regions, with a negative correlation with EF (p = 0.006). There was low HRV, without the influence of any variable, including treatment. With the change in position, there was an increase in HR (p = 0.004), but there was no change in HRV. The LF/HF ratio was 2.7 in the DMD group and 0.7 in the control group (p = 0.002). CONCLUSIONS: In DMD subjects, prominent R waves in V1 and changes in the inferior/high lateral regions occurred in almost 30% of the cases. Lower vagal tone was observed without the influence of the variables age, ejection fraction, QT dispersion, and treatment. Despite the increase in HR, there was no adequate HRV response to the change in position.


FUNDAMENTO: Distrofia Muscular de Duchenne (DMD) é uma doença neuromuscular hereditária rara. O acometimento cardíaco inicial pode ser assintomático. Portanto, a avaliação por métodos não invasivos pode auxiliar sua abordagem. OBJETIVOS: Analisar o eletrocardiograma (ECG) e a variabilidade da frequência cardíaca (VFC) do grupo com DMD, e comparar com a do grupo controle pareado por idade. MÉTODOS: Estudo prospectivo com 27 pacientes masculinos com DMD (idade de 11,9 anos) que foram submetidos à avaliação clínica, ECG, ecocardiograma e Holter. ECG (aumento de 200%) foi avaliado por dois observadores independentes. VFC foi feita no domínio do tempo (24 h) e da frequência na posição supina e sentada. O grupo saudável foi de nove pacientes (11,0 anos). Um valor de p < 0,05 foi considerado estatisticamente significante. RESULTADOS: A média da fração de ejeção (FE) foi de 60% (34 a 71%). O coeficiente de Kappa para as medidas do ECG variou de 0,64 a 1,00. Foram verificados aumento da relação R/S em V1 em 25,9%, onda Q patológica em 29,6% e QRS fragmentado em 22,2% em regiões inferior/lateral alta, este com correlação negativa com FE (p = 0,006). Houve baixa VFC, sem influência de nenhuma variável, inclusive tratamento. Com a mudança da posição, houve aumento da FC (p = 0,004), porém não houve alteração da VFC. A relação LF/HF foi de 2,7 na DMD e de 0,7 no controle (p = 0,002). CONCLUSÕES: Nos participantes com DMD, as ondas R proeminentes em V1 e alterações nas regiões inferior/lateral alta ocorreram em quase 30% dos casos. Houve menor tônus vagal sem influência das variáveis idade, fração de ejeção, dispersão do QT e tratamento. Apesar do aumento da FC, não houve resposta adequada da VFC com a mudança de posição.


Assuntos
Distrofia Muscular de Duchenne , Criança , Humanos , Masculino , Adolescente , Estudos Prospectivos , Eletrocardiografia , Sistema Nervoso Autônomo , Frequência Cardíaca/fisiologia , Postura
8.
Sci Rep ; 14(1): 8341, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594312

RESUMO

The motor neuroscience literature suggests that the central nervous system may encode some motor commands in terms of velocity. In this work, we tackle the question: what consequences would velocity commands produce at the behavioral level? Considering the ubiquitous presence of noise in the neuromusculoskeletal system, we predict that velocity commands affected by stationary noise would produce "random walks", also known as Brownian processes, in position. Brownian motions are distinctively characterized by a linearly growing variance and a power spectral density that declines in inverse proportion to frequency. This work first shows that these Brownian processes are indeed observed in unbounded motion tasks e.g., rotating a crank. We further predict that such growing variance would still be present, but bounded, in tasks requiring a constant posture e.g., maintaining a static hand position or quietly standing. This hypothesis was also confirmed by experimental observations. A series of descriptive models are investigated to justify the observed behavior. Interestingly, one of the models capable of accounting for all the experimental results must feature forward-path velocity commands corrupted by stationary noise. The results of this work provide behavioral support for the hypothesis that humans plan the motion components of their actions in terms of velocity.


Assuntos
Mãos , Postura , Humanos , Movimento (Física)
9.
Int Ophthalmol ; 44(1): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625418

RESUMO

BACKGROUND/AIMS: This work aimed to investigate changes in optic nerve head (ONH) morphometry based on Bruch membrane opening in children with extensive nocturnal intraocular pressure (IOP) elevations. METHODS: The course of Bruch membrane opening-based optic nerve head (ONH) morphometry was analysed in thirty-two patients younger than 18 years with evaluable SD-OCT examinations of the ONH and nocturnal posture-dependent IOP elevation above 25 mmHg. Longitudinal changes in neuroretinal rim tissue, as measured by Bruch Membrane opening minimum rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (RNFL) thickness, were assessed. RESULTS: One year after the 24 h IOP measurement, global BMO-MRW (- 1.61 ± 16.8 µm, n.s.; p = 0.611) and RNFL (+ 0.64 ± 3.17 µm; n.s.; p = 0.292) measurements were not significantly different from the baseline. No significant BMO-MRW reduction (- 3.91 ± 24.3 µm; n.s. p = 0.458) or deviation in RNFL thickness (+ 1.10 ± 3.52 µm) was observed at the four-year follow-up. Absolute IOP values measured in the supine position did not correlate with changes in global BMO-MRW or RNFL thickness. CONCLUSION: Posture-dependent IOP elevations do not seem to influence retinal nerve fibre layer thickness or Bruch membrane opening-based morphometric data in childhood.


Assuntos
Oftalmopatias , Disco Óptico , Criança , Humanos , Pressão Intraocular , Tonometria Ocular , Retina , Postura
10.
Sci Rep ; 14(1): 8012, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580704

RESUMO

The objective of human pose estimation (HPE) derived from deep learning aims to accurately estimate and predict the human body posture in images or videos via the utilization of deep neural networks. However, the accuracy of real-time HPE tasks is still to be improved due to factors such as partial occlusion of body parts and limited receptive field of the model. To alleviate the accuracy loss caused by these issues, this paper proposes a real-time HPE model called CCAM - Person based on the YOLOv8 framework. Specifically, we have improved the backbone and neck of the YOLOv8x-pose real-time HPE model to alleviate the feature loss and receptive field constraints. Secondly, we introduce the context coordinate attention module (CCAM) to augment the model's focus on salient features, reduce background noise interference, alleviate key point regression failure caused by limb occlusion, and improve the accuracy of pose estimation. Our approach attains competitive results on multiple metrics of two open-source datasets, MS COCO 2017 and CrowdPose. Compared with the baseline model YOLOv8x-pose, CCAM-Person improves the average precision by 2.8% and 3.5% on the two datasets, respectively.


Assuntos
Benchmarking , Extremidades , Humanos , Redes Neurais de Computação , Postura , Gravação de Videoteipe
11.
Artigo em Inglês | MEDLINE | ID: mdl-38441974

RESUMO

BACKGROUND: Forward head posture (FHP) decreases the neck position sense and creates tension in the neck muscles, which inversely affects the mechanics of the distal joints through body myofascia. Thus, this study investigated the effects of FHP on neck and ankle joint position sense, and conducted a comparison between the joint position sense of the right and left ankle. METHODS: Fifty-seven subjects were assigned according to the craniovertebral angle (CVA) into the FHP group (CVA <49°; n = 27) or the control group (CVA >49°; n = 30). Head and ankle joint repositioning accuracy was measured by using a cervical range-of-motion device and an isokinetic dynamometer, respectively. RESULTS: There was a significant increase in the joint position error (JPE) of the cervical flexion, extension, and right and left side bending motions of the FHP group compared to the control group (P < .05). There were significant increases in the JPE of the right and left ankle dorsiflexion and plantarflexion of the FHP group compared to the healthy group (P < .05). Moreover, the JPE of the right ankle dorsiflexion and plantarflexion of the FHP group were significantly higher than the left ankle (P < .05). CONCLUSIONS: The FHP decreases the position sense of cervical flexion, extension, and right and left side bending motions, and the plantarflexion and dorsiflexion of both ankle joints, especially the right ankle joint.


Assuntos
Articulação do Tornozelo , Tornozelo , Humanos , Estudos Transversais , Propriocepção , Postura
12.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474914

RESUMO

Walking speed is a significant aspect of evacuation efficiency, and this speed varies during fire emergencies due to individual physical abilities. However, in evacuations, it is not always possible to keep an upright posture, hence atypical postures, such as stoop walking or crawling, may be required for survival. In this study, a novel 3D passive vision-aided inertial system (3D PVINS) for indoor positioning was used to track the movement of 20 volunteers during an evacuation in a low visibility environment. Participants' walking speeds using trunk flexion, trunk-knee flexion, and upright postures were measured. The investigations were carried out under emergency and non-emergency scenarios in vertical and horizontal directions, respectively. Results show that different moving directions led to a roughly 43.90% speed reduction, while posture accounted for over 17%. Gender, one of the key categories in evacuation models, accounted for less than 10% of the differences in speed. The speeds of participants under emergency scenarios when compared to non-emergency scenarios was also found to increase by 53.92-60% when moving in the horizontal direction, and by about 48.28-50% when moving in the vertical direction and descending downstairs. Our results also support the social force theory of the warming-up period, as well as the effect of panic on the facilitating occupants' moving speed.


Assuntos
Incêndios , Caminhada , Humanos , Postura , Posição Ortostática , Velocidade de Caminhada
13.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38544173

RESUMO

Incorrect limb position while lifting heavy weights might compromise athlete success during weightlifting performance, similar to the way that it increases the risk of muscle injuries during resistance exercises, regardless of the individual's level of experience. However, practitioners might not have the necessary background knowledge for self-supervision of limb position and adjustment of the lifting position when improper movement occurs. Therefore, the computerized analysis of movement patterns might assist people in detecting changes in limb position during exercises with different loads or enhance the analysis of an observer with expertise in weightlifting exercises. In this study, hidden Markov models (HMMs) were employed to automate the detection of joint position and barbell trajectory during back squat exercises. Ten volunteers performed three lift movements each with a 0, 50, and 75% load based on body weight. A smartphone was used to record the movements in the sagittal plane, providing information for the analysis of variance and identifying significant position changes by video analysis (p < 0.05). Data from individuals performing the same movements with no added weight load were used to train the HMMs to identify changes in the pattern. A comparison of HMMs and human experts revealed between 40% and 90% agreement, indicating the reliability of HMMs for identifying changes in the control of movements with added weight load. In addition, the results highlighted that HMMs can detect changes imperceptible to the human visual analysis.


Assuntos
Treinamento de Força , Humanos , Reprodutibilidade dos Testes , Treinamento de Força/métodos , Levantamento de Peso/fisiologia , Postura , Extremidades , Movimento
14.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38544184

RESUMO

Body biomechanics and dental occlusion are related, but this interaction is not fully elucidated. The aim of this study was to investigate the association between body posture and occlusion in patients with and without dental pathology. A cross-sectional study was carried out with 29 patients divided into a control group and a group with pathology (malocclusions). Body posture was evaluated by dynamic baropodometry, analyzing parameters such as the line of gait and the anteroposterior and lateral position of the center of pressure (CoP). Occlusion was classified radiographically according to the sagittal skeletal relationship. Results showed significant differences in mean position phase line between groups (p = 0.01-0.02), with means of 115.85 ± 16.98 mm vs. 95.74 ± 24.47 mm (left side) and 109.03 ± 18.03 mm vs. 91.23 ± 20.80 mm (right side) for controls and pathologies, respectively. The effect size was large (Cohen's d 0.97 and 0.92). There were no differences in the anteroposterior (p = 0.38) or lateral (p = 0.78) position of the CoP. In gait analysis, significant differences were observed in left (548.89 ± 127.50 N vs. 360.15 ± 125.78 N, p < 0.001) and right (535.71 ± 131.57 N vs. 342.70 ± 108.40 N, p < 0.001) maximum heel strength between groups. The results suggest an association between body posture and occlusion, although further studies are needed to confirm this relationship. An integrated postural and occlusal approach could optimize the diagnosis and treatment of dental patients.


Assuntos
Oclusão Dentária , Má Oclusão , Humanos , Estudos Transversais , Postura , Marcha
15.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544213

RESUMO

Movement control can be an indicator of how challenging a task is for the athlete, and can provide useful information to improve training efficiency and prevent injuries. This study was carried out to determine whether inertial measurement units (IMU) can provide reliable information on motion variability during strength exercises, focusing on the squat. Sixty-six healthy, strength-trained young adults completed a two-day protocol, where the variability in the squat movement was analyzed at two different loads (30% and 70% of one repetition maximum) using inertial measurement units and a force platform. The time series from IMUs and force platforms were analyzed using linear (standard deviation) and non-linear (detrended fluctuation analysis, sample entropy and fuzzy entropy) measures. Reliability was analyzed for both IMU and force platform using the intraclass correlation coefficient and the standard error of measurement. Standard deviation, detrended fluctuation analysis, sample entropy, and fuzzy entropy from the IMUs time series showed moderate to good reliability values (ICC: 0.50-0.85) and an acceptable error. The study concludes that IMUs are reliable tools for analyzing movement variability in strength exercises, providing accessible options for performance monitoring and training optimization. These findings have implications for the design of more effective strength training programs, emphasizing the importance of movement control in enhancing athletic performance and reducing injury risks.


Assuntos
Treinamento de Força , Adulto Jovem , Humanos , Treinamento de Força/métodos , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Postura , Exercício Físico
16.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544259

RESUMO

Clinical screening tests for balance and mobility often fall short of predicting fall risk. Cognitive distractors and unpredictable external stimuli, common in busy natural environments, contribute to this risk, especially in older adults. Less is known about the effects of upper sensory-motor coordination, such as coordinating one's hand with an external stimulus. We combined movement sonification and affordable inertial motion sensors to develop a task for the precise measurement and manipulation of full-body interaction with stimuli in the environment. In a double-task design, we studied how a supra-postural activity affected quiet stance. The supra-postural task consisted of rhythmic synchronization with a repetitive auditory stimulus. The stimulus was attentionally demanding because it was being modulated continuously. The participant's hand movement was sonified in real time, and their goal was to synchronize their hand movement with the stimulus. In the unpredictable condition, the tempo changed at random points in the trial. A separate sensor recorded postural fluctuations. Young healthy adults were compared to older adult (OA) participants without known risk of falling. The results supported the hypothesis that supra-postural coordination would entrain postural control. The effect was stronger in OAs, supporting the idea that diminished reserve capacities reduce the ability to isolate postural control from sensory-motor and cognitive activity.


Assuntos
Movimento , Postura , Humanos , Idoso , Mãos , Movimento (Física) , Suscetibilidade a Doenças , Equilíbrio Postural , Cognição
17.
J Neurophysiol ; 131(4): 750-756, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507295

RESUMO

To generate a force, the brain activates muscles that act like springs to pull the arm toward a new equilibrium position. The equilibrium position (EP) is central to our understanding of the biological control of viscoelastic muscles. Although there is evidence of the EP during the control of limb posture, EPs have not been directly identified when the limb exerts a force against the environment. Here, we asked participants to apply a constant force in one of eight directions against a point-like constraint. This constraint was released abruptly to observe the final position to which the arm converged. Importantly, the same force magnitude was maintained while changing the arm's stiffness by modulating the strength of the hand's power grasp. The final position moved further away from the constraint as the arm became less stiff and was inversely proportional to the arm's stiffness, thereby confirming that the final position was the arm's EP. These results demonstrate how the EP changes with the arm's stiffness to produce a desired force in different directions.NEW & NOTEWORTHY According to numerous theories, the brain controls posture and movement by activating muscles that attract the limb toward a so-called equilibrium position, but the universality of this mechanism has not been shown for different motor behaviors. Here, we show that even when pushing or pulling against the environment, the brain achieves the desired force through an equilibrium position that lies beyond the physical constraint.


Assuntos
Braço , Movimento , Humanos , Braço/fisiologia , Movimento/fisiologia , Postura , Encéfalo , Fenômenos Biomecânicos
18.
J Biomech ; 166: 112053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513400

RESUMO

Using a smartphone often involves a sustained head-forward tilt posture, which may deteriorate the mechanism of muscle reaction efficiency or reduce the stiffness of connective tissues of the cervical spine. These changes in muscular and connective tissues can impair cervical spine stability and contribute to developing neck pain symptoms. In this experiment, change in the cervical spine stability associated with a sustained smartphone use posture was evaluated by quantifying the effective stiffness and the reflexive responses of the head to sudden perturbations. Seventeen young smartphone users maintained their heads tilted forward approximately 30° for 30 min while watching videos on their smartphones in sitting. Data show that the measures of cervical spine stability did not change significantly after the smartphone use task despite developing mild to moderate neck and upper body discomfort symptoms. Study findings imply that keeping the head tilt posture for 30 min for smartphone use did not significantly alter spinal stability, rejecting its association with neck discomfort.


Assuntos
Vértebras Cervicais , Smartphone , Humanos , Vértebras Cervicais/fisiologia , Pescoço/fisiologia , Coluna Vertebral/fisiologia , Cervicalgia , Postura/fisiologia
19.
Neural Netw ; 174: 106237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513508

RESUMO

Although 3D human pose estimation has recently made strides, it is still difficult to precisely recreate a 3D human posture from a single image without the aid of 3D annotation for the following reasons. Firstly, the process of reconstruction inherently suffers from ambiguity, as multiple 3D poses can be projected onto the same 2D pose. Secondly, accurately measuring camera rotation without laborious camera calibration is a difficult task. While some approaches attempt to address these issues using traditional computer vision algorithms, they are not differentiable and cannot be optimized through training. This paper introduces two modules that explicitly leverage geometry to overcome these challenges, without requiring any 3D ground-truth or camera parameters. The first module, known as the relative depth estimation module, effectively mitigates depth ambiguity by narrowing down the possible depths for each joint to only two candidates. The second module, referred to as the differentiable pose alignment module, calculates camera rotation by aligning poses from different views. The use of these geometrically interpretable modules reduces the complexity of training and yields superior performance. By adopting our proposed method, we achieve state-of-the-art results on standard benchmark datasets, surpassing other self-supervised methods and even outperforming several fully-supervised approaches that heavily rely on 3D annotations.


Assuntos
Algoritmos , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Postura , Rotação , Calibragem
20.
J Biomech ; 166: 112060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38537369

RESUMO

An accelerometer-based pelvis has been employed to study segment and joint kinematics during scenarios involving close human-object interface and/or line-of-sight obstructions. However, its accuracy for examining low back kinetic outcomes is unknown. This study compared reaction moments and contact forces of the L5S1 joint calculated with an accelerometer-based and optically tracked pelvis segment. An approach to correct the global pelvis position as a function of thigh angle was developed. One participant performed four dynamic tasks: forward bend, squat, sit-to-stand-to-sit, and forward lunge. A standard bottom-up inverse dynamics approach was used and the root mean square error (RMSE) and coefficient of determination (R2) were calculated to examine kinetic differences between the optical and accelerometer approaches. The RMSE observed for L5S1 reaction flexion-extension moments ranged from 1.32 Nm to 2.20 Nm (R2 ≥ 0.98). The RMSE for net shear and compression reaction forces ranged from 2.13 to 10.45 N and 0.63 - 4.96 N, respectively. Similarly, the RMSE for L5S1 joint contact shear and compression ranged from 13.45 N to 19.51 N (R2 ≥ 0.85) and 31.18 N - 55.97 N (R2 ≥ 0.97), respectively. In conclusion, the accelerometer-based pelvis together with the approach to correct the global pelvis position is a feasible approach for computing low back kinetics with a single equivalent muscle model. The observed error in joint contact forces represents less than 5 % of the NIOSH recommended action limits and is unlikely to alter the interpretation of low back injury risk.


Assuntos
Movimento , Pelve , Humanos , Movimento/fisiologia , Pelve/fisiologia , Postura/fisiologia , Abdome , Acelerometria , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...