Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21159, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1447571

RESUMO

Abstract Schiff bases are aldehyde-or ketone-like chemical compounds in which an imine or azomethine group replaces the carbonyl group. Such compounds show various beneficial biological activities, such as anti-inflammation and antioxidants. The present study addresses comprehensiveevaluation of antidiabetic effect of two novel dibromides and dichlorides substituted Schiff bases substituted Schiff bases (2,2'-[1,2-cyclohexanediylbis (nitriloethylidyne)]bis[4-chlorophenol] (CNCP) and 2, 2'-[1,2-cyclohexanediylbis(nitriloethylidyne)]bis[4-bromophenol] (CNBP) with two different doses, high (LD) and low (LD) in streptozotocin and nicotinamide induced diabetic rats. The rats were separated into normal, untreated, treated and reference groups. Except for the normal group, diabetes traits were induced in the rest animals. Insulin level was measured, and the effect of the compounds on biochemical parameters of liver function and lipid profile were evaluated. High glucose and decreased insulin level are observed in the groups. The histological evaluation confirms that the hepatic architecture in the treated animals with a low dose of CNCP is quite similar to that of the normal hepatic structure and characterized by normal central vein, hepatocytes without any fatty alterations and mild red blood cell infiltration. CNCP (LD) and CNBP (HD) are more successful in enhancing cell survival in the diabetic rat's liver and can be responsible for causing much healthier structure and notable morphology improvement.


Assuntos
Animais , Masculino , Ratos , Bases de Schiff/agonistas , Estreptozocina/antagonistas & inibidores , Hipoglicemiantes/efeitos adversos , Nicotinamidase/antagonistas & inibidores
2.
Biomolecules ; 12(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009002

RESUMO

Inhibition of Plasmodium falciparum nicotinamidase could represent a potential antimalarial since parasites require nicotinic acid to successfully recycle nicotinamide to NAD+, and importantly, humans lack this biosynthetic enzyme. Recently, mechanism-based inhibitors of nicotinamidase have been discovered. The most potent compound inhibits both recombinant P. falciparum nicotinamidase and parasites replication in infected human red blood cells (RBCs). These studies provide evidence for the importance of nicotinamide salvage through nicotinamidase as a central master player of NAD+ homeostasis in P. falciparum.


Assuntos
Antimaláricos , Niacina , Antimaláricos/farmacologia , Humanos , NAD , Niacinamida/farmacologia , Nicotinamidase , Plasmodium falciparum
3.
Microbiol Spectr ; 10(1): e0098521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171012

RESUMO

Nicotinamidase (Nic) (E.C.3.5.1.19) is a representative protein of the isochorismatase superfamily from Escherichia coli. Despite showing no (+) γ-lactamase activity, its active site constellations (ASCs) are very similar to those of two other known (+) γ-lactamases (Mhpg and RutB), indicating that it could be a latent (+) γ-lactamase. In this study, the primary sequences of the five representative proteins of the isochorismatase superfamily from E. coli were aligned, and a "lid"-like unit of a six-residue loop (112GENPLV117) was established. The Nic protein was converted to a (+) γ-lactamase by eliminating the loop. A conversion mechanism was proposed in which a more compact binding pocket is formed after lid deletion. In addition, the "shrunk" binding pocket stabilized the small substrate and the catalysis intermediate, which triggered catalysis. Moreover, we identified another latent (+) γ-lactamase in the E. coli isochorismatase superfamily and successfully converted it into an active (+) γ-lactamase. In summary, the isochorismatase superfamily is potentially a good candidate for obtaining novel (+) γ-lactamases. IMPORTANCE γ-Lactamases are important enzymatic catalysts in preparing optically pure γ-lactam enantiomers, which are high-value chiral intermediates. Different studies have presumed that the isochorismatase superfamily is a candidate to obtain novel (+) γ-lactamases. By engineering its substrate entrance tunnel, Nic, a representative protein of the isochorismatase superfamily, is converted to a (+) γ-lactamase. Tunnel engineering has proven effective in enhancing enzyme promiscuity. Therefore, the latent or active γ-lactamase activities of the isochorismatase superfamily members indicate their evolutionary path positions.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Escherichia coli/enzimologia , Hidrolases/genética , Hidrolases/metabolismo , Nicotinamidase/genética , Nicotinamidase/metabolismo , Amidoidrolases/química , Biocatálise , Escherichia coli/química , Escherichia coli/genética , Hidrolases/química , Família Multigênica , Nicotinamidase/química , Engenharia de Proteínas , Especificidade por Substrato
4.
Plant Mol Biol ; 107(1-2): 63-84, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34460049

RESUMO

KEY MESSAGE: Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Niacina/fisiologia , Nicotinamidase/genética , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , NAD/metabolismo , NADP/metabolismo , Niacina/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Cell Metab ; 31(3): 564-579.e7, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130883

RESUMO

Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.


Assuntos
Amidas/metabolismo , Vias Biossintéticas , Mamíferos/microbiologia , Mycoplasma/fisiologia , NAD/metabolismo , Administração Oral , Animais , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Metabolismo Energético , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Mononucleotídeo de Nicotinamida/química , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio/metabolismo
6.
J Bacteriol ; 202(2)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636108

RESUMO

Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 µM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 µM) and ZnuA (1 µM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat.


Assuntos
Mycobacterium tuberculosis/enzimologia , Nicotinamidase/metabolismo , Pirazinamida/farmacologia , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Metalochaperonas , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/análogos & derivados
7.
Comput Biol Chem ; 83: 107150, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31733620

RESUMO

Nicotinamidase is a key enzyme for the salvage pathway catalyzing the first step for the conversion of nicotinamide (NAm) to nicotinic acid (NA) required for the synthesis of Nicotinamide Adenine Dinucleotide (NAD+) in the subsequent steps. Leishmania protozoan parasites are NAD+ auxotrophs and need precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ for their survival. Interestingly, absence of this enzyme in higher eukaryotes and its absolute requirement in the developmental cycle of Leishmania has led nicotinamidase an attractive drug target towards leishmaniasis. Hence, we report some potential inhibitors for nicotinamidase screened based on 3-D pharmacophore model consisting of "ML", "Hyd|Aro", "Acc" and "Excl vol" features. Subsequently, dynamics simulation studies validate the proposed pharmacophore model suggesting its reliability for future studies. Furthermore, these essential site-specific features will help in enhancing the inhibition of nicotinamidase activity. Results of our study suggest that blocking of active site of nicotinamidase by the identified lead inhibitor will have major impact on the infectious processes and the survival of the parasite. Furthermore, due to the structural homology in the enzyme among L. donovani, L. infantum, L. major, we anticipate that our study would help to design more potent drug candidates against leshmaniasis for these three species.


Assuntos
Simulação por Computador , Inibidores Enzimáticos/farmacologia , Leishmania donovani/enzimologia , Nicotinamidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Nicotinamidase/metabolismo , Filogenia
8.
J Antimicrob Chemother ; 74(11): 3231-3239, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365085

RESUMO

BACKGROUND: For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms. OBJECTIVES: We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony's mode of action and the mechanisms leading to resistance. METHODS: SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT-PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation. RESULTS: NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites. CONCLUSIONS: These results establish that Leishmania SCAMK is a new central hub of antimony's mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.


Assuntos
Substituição de Aminoácidos , Antimônio/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Nicotinamidase/genética , Proteínas de Protozoários/genética , Sistemas CRISPR-Cas , Cálcio/metabolismo , Resistência a Medicamentos/genética , Edição de Genes , Leishmania/enzimologia , Leishmania/genética , Mutação , Testes de Sensibilidade Parasitária
9.
Sci Rep ; 9(1): 3647, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842479

RESUMO

A novel Alcaligenes sp. strain P156, which can utilize nicotinamide as its sole source of carbon, nitrogen and energy, was enriched and isolated from soil in a solid waste treatment plant. Aerobic growth and degradation with nicotinamide were characterized. Seven nicotinamide degradation-related genes were obtained by sequence alignment from the genome sequence of strain P156. Four genes, designated naaA, naaD, naaE and naaF, were cloned and heterologously expressed. Nicotinamide degradation is initiated by deamination to form nicotinic acid catalyzed by the nicotinamidase NaaA, which shares highest amino acid sequence identity (27.2%) with nicotinamidase from Arabidopsis thaliana. Nicotinic acid is converted to 6-hydroxynicotinic acid, which is further oxidized to 2,5-dihydroxypyridine (2,5-DHP). 2,5-DHP is then transformed to a ring-cleavage product, N-formylmaleamic acid, by an Fe2+ dependent dioxygenase NaaD. N-formylmaleamic acid is transformed to fumaric acid through maleamic acid and maleic acid by NaaE and NaaF, respectively. To our knowledge, this is the first report of the complete microbial degradation of nicotinamide in bacteria. Nicotinamide is considered as a model compound for the study of microbial degradation of pyridinic compounds, and the nicotinamide degrading related genes in strain P156 were distributed differently from the reported similar gene clusters. Therefore, this study contribute to the knowledge on the degradation of pyridinic compounds.


Assuntos
Alcaligenes/isolamento & purificação , Niacinamida/química , Nicotinamidase/genética , Resíduos Sólidos/análise , Alcaligenes/classificação , Alcaligenes/genética , Alcaligenes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Clonagem Molecular , Nicotinamidase/metabolismo , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo
10.
Plant Physiol ; 179(4): 1810-1821, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692220

RESUMO

DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Desmetilação do DNA , Proteínas Nucleares/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Metilação de DNA , Epigenômica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Nicotinamidase/genética , Nicotinamidase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
11.
Biochem Biophys Res Commun ; 503(4): 2906-2911, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30107912

RESUMO

The nicotinamidase/pyrazinamidase PncA is a member of a large family of hydrolase enzymes that catalyze the deamination of nicotinamide to nicotinic acid. PncA also functions as a pyrazinamidase in a wide variety of eubacteria and is an essential coenzyme in many cellular redox reactions in living systems. We report the crystal structure of substrate-free PncA from Bacillus subtilis (BsPncA) at 2.0 Šresolution to improve our understanding of the PncA family. The structure of BsPncA consists of an α/ß domain and a subdomain. The subdomain of BsPncA has a different conformation than that of PncA enzymes from other organisms. The B-factor analysis revealed a rigid structure of the α/ß domain, while the subdomain is highly flexible. Both dimers and tetramers were observed in BsPncA protein crystals, but only dimers were observed in solution. Our results provide useful information that will further enhance our understanding of the molecular functions of PncA family members.


Assuntos
Amidoidrolases/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Nicotinamidase , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
12.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555696

RESUMO

Many organisms possess pathways that regenerate NAD+ from its degradation products, and two pathways are known to salvage NAD+ from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD+, respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD+ salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway.IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD+ from nicotinamide (Nm) in the hyperthermophilic archaeon Thermococcus kodakarensis The organism utilizes a four-step pathway that initially hydrolyzes the amide bond of Nm to generate nicotinic acid (Na), followed by phosphoribosylation, adenylylation, and amidation. Although the two-step pathway, consisting of only phosphoribosylation of Nm and adenylylation, seems to be more efficient, Nm mononucleotide in the two-step pathway is much more thermolabile than Na mononucleotide, the corresponding intermediate in the four-step pathway. Although NAD+ itself is thermolabile, this may represent an example of a metabolism that has evolved to avoid the use of thermolabile intermediates.


Assuntos
NAD/metabolismo , Nicotinamidase/metabolismo , Nucleotidiltransferases/metabolismo , Pentosiltransferases/metabolismo , Thermococcus/metabolismo , Desaminação , Temperatura Alta , Niacinamida/metabolismo , Nicotinamidase/genética , Mononucleotídeo de Nicotinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo , Ácidos Nicotínicos/metabolismo , Nucleotidiltransferases/genética , Pentosiltransferases/genética , Proteínas Recombinantes , Especificidade por Substrato , Thermococcus/genética , Thermococcus/crescimento & desenvolvimento
13.
PLoS One ; 12(7): e0181561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750065

RESUMO

Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5-10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments.


Assuntos
Bactérias/enzimologia , Fontes Termais/microbiologia , Microbiota , Nicotinamidase/metabolismo , Rios/microbiologia , Microbiologia da Água , Aldeídos/metabolismo , Sequência de Aminoácidos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Nicotinamidase/antagonistas & inibidores , Nicotinamidase/química , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
14.
J Bacteriol ; 199(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28630126

RESUMO

NAD (NAD+) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD+ from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD+de novo synthesis pathway. Herein, we report the importance of the NAD+ salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD+ salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide (Km of 17 µM, kcat of 50 s-1, kcat/Km of 3.0 × 103 s-1 · mM-1). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD+ salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD+ and NADH.IMPORTANCE NAD+ and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD+ decomposition is, in general, more rapid. This study emphasizes that NAD+ instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures.


Assuntos
Deleção de Genes , NAD/metabolismo , Nicotinamidase/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/efeitos da radiação , Temperatura Alta , Cinética , Niacinamida/metabolismo , Nicotinamidase/genética , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento
15.
EMBO Rep ; 17(12): 1829-1843, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27799288

RESUMO

Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.


Assuntos
Restrição Calórica , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Acetiltransferase N-Terminal D/deficiência , Acetiltransferase N-Terminal D/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Acetilação , Cromatina/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Longevidade , Acetiltransferase N-Terminal D/genética , Nicotinamidase/genética , Nicotinamidase/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Ativação Transcricional
16.
Genetics ; 204(2): 569-579, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27527516

RESUMO

Nicotinamide is both a reaction product and an inhibitor of the conserved sirtuin family of deacetylases, which have been implicated in a broad range of cellular functions in eukaryotes from yeast to humans. Phenotypes observed following treatment with nicotinamide are most often assumed to stem from inhibition of one or more of these enzymes. Here, we used this small molecule to inhibit multiple sirtuins at once during treatment with DNA damaging agents in the Saccharomyces cerevisiae model system. Since sirtuins have been previously implicated in the DNA damage response, we were surprised to observe that nicotinamide actually increased the survival of yeast cells exposed to the DNA damage agent MMS. Remarkably, we found that enhanced resistance to MMS in the presence of nicotinamide was independent of all five yeast sirtuins. Enhanced resistance was also independent of the nicotinamide salvage pathway, which uses nicotinamide as a substrate to generate NAD+, and of a DNA damage-induced increase in the salvage enzyme Pnc1 Our data suggest a novel and unexpected function for nicotinamide that has broad implications for its use in the study of sirtuin biology across model systems.


Assuntos
Dano ao DNA/genética , Histona Desacetilases do Grupo III/genética , Nicotinamidase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirtuínas/genética , Dano ao DNA/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Histona Desacetilases do Grupo III/biossíntese , Metanossulfonato de Metila/toxicidade , Niacinamida/farmacologia , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Sirtuínas/biossíntese
17.
Appl Environ Microbiol ; 82(19): 5815-23, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451449

RESUMO

UNLABELLED: Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE: Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb2ΔpncA led to a decrease in the NAD(+) content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence of R. anatipestifer and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate.


Assuntos
Proteínas de Bactérias/genética , Patos , Infecções por Flavobacteriaceae/veterinária , Nicotinamidase/genética , Doenças das Aves Domésticas/imunologia , Riemerella/genética , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Expressão Gênica , Imunização/veterinária , Nicotinamidase/imunologia , Nicotinamidase/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/imunologia , Riemerella/metabolismo , Deleção de Sequência , Vacinas Atenuadas/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
18.
Biochim Biophys Acta ; 1863(1): 148-56, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26516056

RESUMO

Saccharomyces cerevisiae glycerol phosphate dehydrogenase 1 (Gpd1) and nicotinamidase (Pnc1) are two stress-induced enzymes. Both enzymes are predominantly localised to peroxisomes at normal growth conditions, but were reported to localise to the cytosol and nucleus upon exposure of cells to stress. Import of both proteins into peroxisomes depends on the peroxisomal targeting signal 2 (PTS2) receptor Pex7. Gpd1 contains a PTS2, however, Pnc1 lacks this sequence. Here we show that Pnc1 physically interacts with Gpd1, which is required for piggy-back import of Pnc1 into peroxisomes. Quantitative fluorescence microscopy analyses revealed that the levels of both proteins increased in peroxisomes and in the cytosol upon exposure of cells to stress. However, upon exposure of cells to stress we also observed enhanced cytosolic levels of the control PTS2 protein thiolase, when produced under control of the GPD1 promoter. This suggests that these conditions cause a partial defect in PTS2 protein import, probably because the PTS2 import pathway is easily saturated.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Nicotinamidase/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Nicotinamidase/genética , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Transporte Proteico/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
J Biol Chem ; 290(42): 25333-42, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26276932

RESUMO

Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD(+) salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.


Assuntos
Proteínas de Transporte/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Nicotinamidase/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Dimerização , Transporte Proteico , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico
20.
Molecules ; 19(10): 15735-53, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268724

RESUMO

Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The overall mechanism occurs in two stages: (i) formation of a thioester enzyme-intermediate (IC2) and (ii) hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ·mol-1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103) is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.


Assuntos
Modelos Químicos , Modelos Moleculares , Nicotinamidase/química , Nicotinamidase/metabolismo , Streptococcus pneumoniae/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...