Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.609
Filtrar
1.
J Med Microbiol ; 73(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268705

RESUMO

Introduction. As growing numbers of patients are at higher risk of infection, novel topical broad-spectrum antimicrobials are urgently required for wound infection management. Robust pre-clinical studies should support the development of such novel antimicrobials.Gap statement. To date, evidence of robust investigation of the cytotoxicity and antimicrobial spectrum of activity of antimicrobial peptides (AMP)s is lacking in published literature. Using a more clinical lens, we address this gap in experimental approach, building on our experience with poly-l-lysine (PLL)-based AMP polymers.Aim. To evaluate the in vitro bactericidal activity and cytotoxicity of a PLL-based 16-armed star AMP polymer, designated 16-PLL10, as a novel candidate antimicrobial.Methods. Antimicrobial susceptibilities of clinical isolates and reference strains of ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) pathogens, to 16-PLL10 were investigated. Human erythrocyte haemolysis and keratinocyte viability assays were used to assess toxicity. Modifications were made to 16-PLL10 and re-evaluated for improvement.Results. Minimum bactericidal concentration of 16-PLL10 ranged from 1.25 µM to ≥25 µM. At 2.5 µM, 16-PLL10 was broadly bactericidal against ESKAPE strains/wound isolates. Log-reduction in colony forming units (c.f.u.) per millilitre after 1 h, ranged from 0.3 (E. cloacae) to 5.6 (K. pneumoniae). At bactericidal concentrations, 16-PLL10 was toxic to human keratinocyte and erythrocytes. Conjugates of 16-PLL10, Trifluoroacetylated (TFA)-16-PLL10, and Poly-ethylene glycol (PEG)ylated 16-PLL10, synthesised to address toxicity, only moderately reduced cytotoxicity and haemolysis.Conclusions. Due to poor selectivity indices, further development of 16-PLL10 is unlikely warranted. However, considering the unmet need for novel topical antimicrobials, the ease of AMP polymer synthesises/modification is attractive. To support more rational development, prioritising clinically relevant pathogens and human cells, to establish selective toxicity profiles in vitro, is critical. Further characterisation and discovery utilising artificial intelligence and computational screening approaches can accelerate future AMP nanomaterial development.


Assuntos
Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Polilisina , Humanos , Polilisina/farmacologia , Polilisina/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Eritrócitos/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polímeros/farmacologia , Polímeros/química , Acinetobacter baumannii/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Pharm ; 664: 124628, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39179009

RESUMO

Subcutaneous (SC) injection is a common route of administration for drug compounds with poor oral bioavailability. However, bioavailability is often variable and incomplete, and there is as yet no standard accepted medium for simulation of the human SC environment. In this work we evaluate a FRAP based method for quantitative determination of local self-diffusion coefficients within extracellular matrix (ECM) mimetic hydrogels, potentially useful as in vitro models for drug transport in the ECM after SC injection. Gels were made consisting of either agarose, cross-linked collagen (COL) and hyaluronic acid (HA) or cross-linked HA. The diffusivities of uncharged FITC-dextran (FD4), the highly charged poly-lysine (PLK20) and poly-glutamic acid (PLE20) as well as the GLP-1 analogue exenatide were determined within the gels using FRAP. The diffusion coefficients in uncharged agarose gels were in the range of free diffusion in PBS. The diffusivity of cationic PLK20 in gels containing anionic HA was substantially decreased due to strong electrostatic interactions. Peptide aggregation could be observed as immobile fractions in experiments with exenatide. We conclude that the FRAP method provides useful information of peptides' interactions and transport properties in hydrogel networks, giving insight into the mechanisms affecting absorption of drug compounds after subcutaneous injection.


Assuntos
Dextranos , Exenatida , Matriz Extracelular , Ácido Hialurônico , Hidrogéis , Peptídeos , Hidrogéis/química , Difusão , Matriz Extracelular/metabolismo , Injeções Subcutâneas , Exenatida/farmacocinética , Exenatida/química , Exenatida/administração & dosagem , Ácido Hialurônico/química , Dextranos/química , Dextranos/farmacocinética , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/administração & dosagem , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Polilisina/química , Colágeno/química , Sefarose/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos
3.
Malar J ; 23(1): 227, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090669

RESUMO

BACKGROUND: Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS: This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS: A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION: Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.


Assuntos
Antimaláricos , Eritrócitos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Peptídeos/farmacologia , Peptídeos/química , Humanos , Polímeros/farmacologia , Polímeros/química , Polilisina/farmacologia , Polilisina/química
4.
Biosensors (Basel) ; 14(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194612

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers-such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)-the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and -80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules.


Assuntos
Alginatos , Técnicas Biossensoriais , Pseudomonas aeruginosa , Percepção de Quorum , Polilisina , Biofilmes , Microesferas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
5.
Biomater Sci ; 12(18): 4747-4758, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39118400

RESUMO

Synovial fluid lubricates articular joints by forming a hydrated layer between the cartilage surfaces. In degenerative joint diseases like osteoarthritis (OA), the synovial fluid is compromised, which leads to less effective innate lubrication and exacerbated cartilage degeneration. Studies over the years have led to the development of partially or fully synthetic biolubricants to reduce the coefficient of friction with cartilage in knee joints. Cartilage-adhering, hydrated lubricants are particularly important to provide cartilage lubrication and chondroprotection under high normal load and slow speed. Here, we report the development of a hyaluronic acid (HA)-based lubricant functionalized with cationic branched poly-L-lysine (BPL) molecules that bind to cartilage via electrostatic interactions. We surmised that the electrostatic interactions between the BPL-modified HA molecules (HA-BPL) and the cartilage facilitate localization of the HA molecules to the cartilage surface. The number of BPL molecules on the HA backbone was varied to determine the optimal grafting density for cartilage binding and HA localization. Collectively, our results show that our HA-BPL molecules adhered readily to cartilage and were effective as a lubricant in cartilage-on-cartilage shear measurements where the modified HA molecules significantly reduce the coefficient of friction compared to phosphate-buffered saline or HA alone. This proof-of-concept study shows how the incorporation of cartilage adhering moieties, such as cationic molecules, can be used to enhance cartilage binding and lubrication properties of HA.


Assuntos
Cartilagem Articular , Cátions , Ácido Hialurônico , Lubrificação , Polilisina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Adsorção , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cátions/química , Animais , Polilisina/química , Polilisina/farmacologia , Bovinos , Lubrificantes/química , Lubrificantes/farmacologia , Fricção/efeitos dos fármacos , Líquido Sinovial/metabolismo , Líquido Sinovial/química , Líquido Sinovial/efeitos dos fármacos
6.
Sci Total Environ ; 950: 175296, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111417

RESUMO

The microbial enrichment of traditional biocarriers is limited due to the inadequate consideration of spatial structure and surface charging characteristics. Here, capitalizing on the ability of 3D printing technology to fabricate high-resolution materials, we further designed a positively charged sodium alginate/ε-poly-l-lysine (SA/ε-PL) printing ink, and the 3D printed biocarriers with ideal pore structure and rich positive charge were constructed to enhance the microbial enrichment. The rheological and mechanical tests confirmed that the developed SA/ε-PL ink could simultaneously satisfy the smooth extrusion for printing process and the maintenance of 3D structure. The utilization of the ε-PL secondary cross-linking strategy reinforced the 3D mechanical structure and imparted the requisite physical properties for its application as a biocarrier. Compared with traditional sponge carriers, 3D printed biocarrier had a faster initial attachment rate and a higher biomass of 14.58 ± 1.18 VS/cm3, and the nitrogen removal efficiency increased by 53.9 %. Besides, due to the superior electrochemical properties and biocompatibility, the 3D printed biocarriers effectively enriched the electroactive denitrifying bacteria genus Trichococcus, thus supporting its excellent denitrification performance. This study provided novel insights into the development of new functional biocarriers in the wastewater treatment, thereby providing scientific guidance for practical engineering.


Assuntos
Alginatos , Nitrogênio , Polilisina , Impressão Tridimensional , Eliminação de Resíduos Líquidos , Águas Residuárias , Alginatos/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Polilisina/química , Eliminação de Resíduos Líquidos/métodos , Tinta
7.
Biomater Adv ; 164: 213981, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39096587

RESUMO

Generally, oligolysine has poor antibacterial effect and almost no antibacterial activity. Herein, low cost and easily available oligolysines were chosen to prepare injectable antibacterial hydrogel (PVAL-gel) for wound healing. The hydrogel network was formed by cross-linking vanillin acrylate-N, N-dimethylacrylamide copolymer P(VA-co-DMA), oligolysine and adipate dihydrazide through Schiff base bond. The obtained hydrogel PVAL-gel exhibited not only excellent self-healing capability and injectability, but also the efficient contact antibacterial ability and good inhibitory effects on E.coli and S.aureus. In vitro, 99.9 % of pathogenic bacteria was killed within 160 min. Furthermore, the injectable PVAL-gel could rapidly eradicate bacteria in infected wounds and notably enhance the healing of full-thickness skin wounds. Therefore, PVAL-gel is expected to be used as a high-end dressing for the treatment of infected skin wounds, which can promote wound healing.


Assuntos
Antibacterianos , Escherichia coli , Hidrogéis , Staphylococcus aureus , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Benzaldeídos/química , Benzaldeídos/farmacologia , Benzaldeídos/administração & dosagem , Testes de Sensibilidade Microbiana , Injeções , Adipatos/química , Adipatos/farmacologia , Camundongos , Acrilamidas/química , Acrilamidas/farmacologia , Polilisina/química , Polilisina/farmacologia
8.
Biomacromolecules ; 25(8): 5160-5168, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39041825

RESUMO

Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.


Assuntos
Alginatos , Ânions , Ácido Hialurônico , Polilisina , Polilisina/química , Ácido Hialurônico/química , Alginatos/química , Ânions/química , Eletrólitos/química , Ácidos Hexurônicos/química , Polissacarídeos/química
9.
Int J Biol Macromol ; 277(Pt 2): 134208, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069059

RESUMO

Antibacterial hydrogels as burn wound dressings are capable of efficaciously defending against bacterial infection and accelerating burn wound healing. Thus far, a large plethora of antibacterial hydrogels have adopted numerous components and intricate preparation processes, yet restricting their practical industrialization applications. Simple and effective preparation methods of antibacterial hydrogels are hence urgently needed. Herein, an easy but efficacious strategy with the employment of two natural products pullulan and ε-poly-l-lysine (ε-PL) was designed to fabricate composite antibacterial hydrogels for burn wound healing for the first time. The hydrogel crosslinking networks were formed through amidation reactions between carboxylated pullulan derivative (CP) and ε-poly-l-lysine hydrochloride (ε-PL·HCl). The resulting hydrogels possessed high transparency, porous structures, tunable gelation time and gel content, relatively low swelling ratios, appropriate self-degradability, proper mechanical properties, strong in vitro bacteriostatic activities, non-cytotoxicity, capacities of facilitating cell migration and excellent hemocompatibility. In the infected burn model of mice, the hydrogels were observed to display prominent in vivo antibacterial activities and enable the acceleration of burn wound healing. We opine the simply and effectively prepared antibacterial hydrogels as promising dressings for burn wound recovery have broad industrialization prospects.


Assuntos
Antibacterianos , Queimaduras , Glucanos , Hidrogéis , Polilisina , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Glucanos/química , Glucanos/farmacologia , Polilisina/química , Polilisina/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Queimaduras/tratamento farmacológico , Queimaduras/terapia , Camundongos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
10.
Int J Biol Macromol ; 277(Pt 2): 134188, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084428

RESUMO

The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.


Assuntos
Trifosfato de Adenosina , Apoptose , Neoplasias da Mama , Portadores de Fármacos , Ácido Hialurônico , Nanopartículas , Polilisina , Humanos , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ácidos Borônicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Células MCF-7 , Nanopartículas/química , Polilisina/química
11.
Bioresour Technol ; 407: 131123, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029766

RESUMO

ε-Poly-L-lysine (ε-PL) is an amino acid homopolymer with diverse potential applications in the food, pharmaceutical and cosmetic industries. To improve its biomanufacturing efficiency, strain engineering and bioprocess optimization were combined in this study. Firstly, a cocktail strain breeding strategy was employed to generate a ε-PL high-production mutant, Streptomyces albulus GS114, with enhanced L-lysine uptake capability. Subsequently, the L-lysine feeding conditions during fed-batch fermentation were systematically optimized to improve the L-lysine supply, resulting in ε-PL production reaching 73.1 ± 1.4 g/L in 5 L bioreactor. Finally, an engineered strain, S. albulus L2, with enhanced uptake capability and polymerization ability of L-lysine was constructed, achieving ε-PL production of 81.4 ± 5.2 g/L by fed-batch fermentation. This represents the highest reported production of ε-PL to date. This study provided an efficient production strategy for ε-PL and valuable insights into the high-value utilization of L-lysine.


Assuntos
Reatores Biológicos , Fermentação , Lisina , Polilisina , Streptomyces , Streptomyces/metabolismo , Polilisina/biossíntese , Lisina/metabolismo , Técnicas de Cultura Celular por Lotes
12.
Biomacromolecules ; 25(8): 5110-5120, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39009036

RESUMO

The development of a green and facile method for the controlled synthesis of functional polypeptides is desired for sustainable material applications. In this study, the regioselective synthesis of poly(l-lysine) (polyLys) via enzyme-catalyzed aminolysis was achieved by bulk polymerization of l-lysine ethyl ester (Lys-OEt) using immobilized Candida antarctica lipase Novozym 435 (IM-lipase) or trypsin (IM-trypsin). Structural characterization of the obtained polyLys revealed that IM-lipase resulted solely in ε-linked amide bond formation, whereas IM-trypsin predominantly provided α-linked polyLys. Optimization of the conditions for the bulk polymerization using immobilized enzymes resulted in high monomer conversion and a high degree of polymerization, with excellent regioselectivity. Molecular docking simulations revealed different binding conformations of Lys-OEt to the catalytic pockets of lipase and trypsin, which putatively resulted in different amino moieties being used for amide bond formation. The immobilized enzymes were recovered and recycled for bulk polymerization, and the initial activity was maintained in the case of IM-trypsin. The obtained α- and ε-linked polyLys products exhibited different degradability against proteolysis, demonstrating the possibility of versatile applications as sustainable materials. This enzymatic regioregular control enabled the synthesis of well-defined polypeptide-based materials with a diverging structural variety.


Assuntos
Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Polimerização , Tripsina , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Tripsina/química , Tripsina/metabolismo , Polilisina/química , Lisina/química , Simulação de Acoplamento Molecular , Biocatálise , Ésteres/química , Basidiomycota
13.
J Nanobiotechnology ; 22(1): 413, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004736

RESUMO

Peripheral arterial diseases (PAD) have been reported to be the leading cause for limb amputations, and the current therapeutic strategies including antiplatelet medication or intervene surgery are reported to not clinically benefit the patients with high-grade PAD. To this respect, revascularization based on angiogenetic vascular endothelial growth factor (VEGF) gene therapy was attempted for the potential treatment of critical PAD. Aiming for transcellular delivery of VEGF-encoding plasmid DNA (pDNA), we proposed to elaborate intriguing virus-like DNA condensates, wherein the supercoiled rigid micrometer-scaled plasmid DNA (pDNA) could be regulated in an orderly fashion into well-defined nano-toroids by following a self-spooling process with the aid of cationic block copolymer poly(ethylene glycol)-polylysine at an extraordinary ionic strength (NaCl: 600 mM). Moreover, reversible disulfide crosslinking was proposed between the polylysine segments with the aim of stabilizing these intriguing toroidal condensates. Pertaining to the critical hindlimb ischemia, our proposed toroidal VEGF-encoding pDNA condensates demonstrated high levels of VEGF expression at the dosage sites, which consequently contributed to the neo-vasculature (the particularly abundant formation of micro-vessels in the injected hindlimb), preventing the hindlimb ischemia from causing necrosis at the extremities. Moreover, excellent safety profiles have been demonstrated by our proposed toroidal condensates, as opposed to the apparent immunogenicity of the naked pDNA. Hence, our proposed virus-like DNA condensates herald potentials as gene therapy platform in persistent expressions of the therapeutic proteins, and might consequently be highlighted in the management of a variety of intractable diseases.


Assuntos
Terapia Genética , Membro Posterior , Isquemia , Plasmídeos , Polilisina , Fator A de Crescimento do Endotélio Vascular , Animais , Terapia Genética/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Isquemia/terapia , Polilisina/química , Polilisina/análogos & derivados , Camundongos , Polietilenoglicóis/química , Masculino , Humanos , Neovascularização Fisiológica , DNA/química , Doença Arterial Periférica/terapia
14.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956295

RESUMO

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Assuntos
Bacillaceae , Polilisina , Serina Proteases , Streptomyces , Streptomyces/enzimologia , Polilisina/farmacologia , Polilisina/química , Polilisina/metabolismo , Serina Proteases/metabolismo , Bacillaceae/enzimologia , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Genoma Viral , Animais , Norovirus/efeitos dos fármacos , Norovirus/genética , Inativação de Vírus/efeitos dos fármacos , Caliciviridae/genética , Antivirais/farmacologia
15.
Biomolecules ; 14(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39062465

RESUMO

Safe and eco-friendly preservatives are crucial to preventing food spoilage and illnesses, as foodborne diseases caused by pathogens result in approximately 600 million cases of illness and 420,000 deaths annually. ε-Poly-L-lysine (ε-PL) is a novel food preservative widely used in many countries. However, its commercial application has been hindered by high costs and low production. In this study, ε-PL's biosynthetic capacity was enhanced in Streptomyces albulus WG608 through metabolic engineering guided by multi-omics techniques. Based on transcriptome and metabolome data, differentially expressed genes (fold change >2 or <0.5; p < 0.05) and differentially expressed metabolites (fold change >1.2 or <0.8) were separately subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The integrative analysis of transcriptome, metabolome, and overexpression revealed the essential roles of isocitrate lyase, succinate dehydrogenase, flavoprotein subunit, diaminopimelate dehydrogenase, polyphosphate kinase, and polyP:AMP phosphotransferase in ε-PL biosynthesis. Subsequently, a strain with enhanced ATP supply, L-lysine supply, and ε-PL synthetase expression was constructed to improve its production. Finally, the resulting strain, S. albulus WME10, achieved an ε-PL production rate of 77.16 g/L in a 5 L bioreactor, which is the highest reported ε-PL production to date. These results suggest that the integrative analysis of the transcriptome and metabolome can facilitate the identification of key pathways and genetic elements affecting ε-PL synthesis, guiding further metabolic engineering and thus significantly enhancing ε-PL production. The method presented in this study could be applicable to other valuable natural antibacterial agents.


Assuntos
Engenharia Metabólica , Polilisina , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Engenharia Metabólica/métodos , Polilisina/biossíntese , Polilisina/metabolismo , Metaboloma , Transcriptoma , Metabolômica/métodos , Multiômica
16.
Bioconjug Chem ; 35(7): 996-1006, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38946349

RESUMO

Biosensors based on immobilized antibodies require molecular strategies that (i) couple the antibodies in a stable fashion while maintaining the conformation and functionality, (ii) give outward orientation of the paratope regions of the antibodies for good accessibility to analyte molecules in the biofluid, and (iii) surround the antibodies by antibiofouling molecules. Here, we demonstrate a method to achieve oriented coupling of antibodies to an antifouling poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) substrate, using glycan remodeling to create antibody-DNA conjugates. The coupling, orientation, and functionality of the antibodies were studied using two analysis methods with single-molecule resolution, namely single-molecule localization microscopy and continuous biosensing by particle motion. The biosensing functionality of the glycan-remodeled antibodies was demonstrated in a sandwich immunosensor for procalcitonin. The results show that glycan-remodeled antibodies enable oriented immobilization and biosensing functionality with low nonspecific binding on antifouling polymer substrates.


Assuntos
Anticorpos Imobilizados , Técnicas Biossensoriais , Polissacarídeos , Técnicas Biossensoriais/métodos , Polissacarídeos/química , Polissacarídeos/imunologia , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Polietilenoglicóis/química , Incrustação Biológica/prevenção & controle , Polilisina/química , Anticorpos/imunologia , Anticorpos/química , Humanos , Polímeros/química
17.
Int J Biol Macromol ; 276(Pt 1): 133836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004254

RESUMO

This study explored the structure and performance of starch-based antibacterial films reinforced with black tea cellulose nanocrystals (BT-CNCs). The optimal addition amount of BT-CNCs is 5 % (w/w Starch). This nanocrystal-infused film, incorporating chitosan (CS), ε-polylysine (ε-PL), and zinc oxide nanoparticles (ZnONP) as antibacterial agents, exhibited a smooth, continuous surface. The addition of BT-CNCs and antibacterial agents did not change the group characteristic peaks of the film, but changed the crystallinity slightly. The films, namely St, St/CNCs, St/CNCs/CS, and St/CNCs/ε-P, maintained high light transmittance (above 80 %), except for the St/CNCs/ZnONP film, which effectively shielded UV radiation. The combined use of antibacterial agents and BT-CNCs enhanced the water and oxygen barrier properties of the film. Notably, the St/CNCs/CS film exhibited the lowest solubility (17.74 % ± 0.36) and the highest tensile strength (14.23 ± 0.16 MPa). The antibacterial efficacy of the films decreased in the order of St/CNCs/ZnONP, St/CNCs/ε-PL, and St/CNCs/CS, with a more pronounced inhibitory effect on E. coli compared to S. aureus. This study marries natural waste recycling with cutting-edge food packaging technology, setting a new benchmark for the development of sustainable packaging materials.


Assuntos
Antibacterianos , Celulose , Amido , Celulose/química , Celulose/farmacologia , Amido/química , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Solubilidade , Resistência à Tração , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Embalagem de Alimentos/métodos , Nanocompostos/química , Polilisina/química , Polilisina/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
18.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949285

RESUMO

The phase separation of protein and RNA mixtures underpins the assembly and regulation of numerous membraneless organelles in cells. The ubiquity of protein-RNA condensates in cellular regulatory processes is in part due to their sensitivity to RNA concentration, which affects their physical properties and stability. Recent experiments with poly-cationic peptide-RNA mixtures have revealed closed-loop phase diagrams featuring lower and upper critical solution temperatures. These diagrams indicate reentrant phase transitions shaped by biomolecular interactions and entropic forces such as solvent and ion reorganization. We employed atomistic simulations to study mixtures with various RNA-polylysine stoichiometries and temperatures to elucidate the microscopic driving forces behind reentrant phase transitions in protein-RNA mixtures. Our findings reveal an intricate interplay between hydration, ion condensation, and specific RNA-polylysine hydrogen bonding, resulting in distinct stoichiometry-dependent phase equilibria governing stabilities and structures of the condensate phase. Our simulations show that reentrant transitions are accompanied by desolvation around the phosphate groups of RNA, with increased contacts between phosphate and lysine side chains. In RNA-rich systems at lower temperatures, RNA molecules can form an extensive pi-stacking and hydrogen bond network, leading to percolation. In protein-rich systems, no such percolation-induced transitions are observed. Furthermore, we assessed the performance of three prominent water force fields-Optimal Point Charge (OPC), TIP4P-2005, and TIP4P-D-in capturing reentrant phase transitions. OPC provided a superior balance of interactions, enabling effective capture of reentrant transitions and accurate characterization of changes in solvent reorganization. This study offers atomistic insights into the nature of reentrant phase transitions using simple model peptide and nucleotide mixtures. We believe that our results are broadly applicable to larger classes of peptide-RNA mixtures exhibiting reentrant phase transitions.


Assuntos
Simulação de Dinâmica Molecular , Transição de Fase , Polilisina , RNA , Polilisina/química , RNA/química , Ligação de Hidrogênio , Poli U/química
19.
J Biosci Bioeng ; 138(3): 249-253, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991881

RESUMO

Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. We previously demonstrated that two representative bacterial polycationic isopeptides, ε-poly-l-α-lysine consisting of 25-35 l-α-lysine residues (ε-PαL25-35) and ε-poly-l-ß-lysine consisting of l-ß-lysine residues (ε-PßL4-13), were internalized into mammalian cells by both energy-independent direct penetration and energy-dependent endocytosis/macropinocytosis, and then diffused throughout the cytosol. In this study, we investigated the cell-penetrating activity of an ε-PαL short-chain derivative consisting of 5-14 l-α-lysine residues (ε-PαL5-14) to gain insight into the relationship between the isopeptide-chain length and the manner of cellular internalization. We prepared a conjugate of ε-PαL5-14 and a fluorescent dye (FAM) by click chemistry, and incubated the resulting polymer, ε-PαL5-14-FAM, with HeLa cells. Unlike ε-PαL25-35-FAM, ε-PαL5-14-FAM was internalized into cells only by energy-dependent endocytosis/macropinocytosis. Furthermore, a high concentration (>50 µM) was required for the internalization events. ε-PαL5-14 has a chain length almost equal to that of the membrane permeable ε-PßL4-13, which can enter cells at low concentrations. Considering that the basicity of the ß-amino group is higher than that of α-amino acid at physiological pH, ε-PßL is expected to have a greater cell-penetrating capacity than ε-PαL, provided their isopeptide-chain lengths are similar, suggesting that a more extended chain derivative of ε-PßL would be more advantageous for cellular internalization of cargo proteins than ε-PαL25-35.


Assuntos
Peptídeos Penetradores de Células , Endocitose , Polilisina , Humanos , Células HeLa , Polilisina/química , Polilisina/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Polieletrólitos/química , Química Click
20.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066499

RESUMO

AIMS: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS: The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Nisina , Polilisina , Polifenóis , Chá , Animais , Nisina/farmacologia , Antibacterianos/farmacologia , Polilisina/farmacologia , Polifenóis/farmacologia , Gatos , Chá/química , Biofilmes/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Transcriptoma , Boca/microbiologia , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA