Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.606
Filtrar
1.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39254333

RESUMO

There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.


Assuntos
Receptores de Kisspeptina-1 , Receptores LHRH , Humanos , Feminino , Animais , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Receptores LHRH/metabolismo , Receptores LHRH/genética , Camundongos , Células HEK293 , Peixe-Zebra , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Kisspeptinas/metabolismo , Kisspeptinas/genética , Poluentes Ambientais/toxicidade , Poluentes Ambientais/farmacologia
2.
Molecules ; 29(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274973

RESUMO

The gonadotropin-releasing hormone (GnRH) receptor (GnRH-R) is highly expressed in ovarian cancer cells (OCC), and it is an important molecular target for cancer therapeutics. To develop a new class of drugs targeting OCC, we designed and synthesized Con-3 and Con-7 which are novel high-affinity GnRH-R agonists, covalently coupled through a disulfide bond to the DNA synthesis inhibitor mitoxantrone. We hypothesized that Con-3 and Con-7 binding to the GnRH-R of OCC would expose the conjugated mitoxantrone to the cellular thioredoxin, which reduces the disulfide bond of Con-3 and Con-7. The subsequent release of mitoxantrone leads to its intracellular accumulation, thus exerting its cytotoxic effects. To test this hypothesis, we determined the cytotoxic effects of Con-3 and Con-7 using the SKOV-3 human OCC. Treatment with Con-3 and Con-7, but not with their unconjugated GnRH counterparts, resulted in the accumulation of mitoxantrone within the SKOV-3 cells, increased their apoptosis, and reduced their proliferation, in a dose- and time-dependent manner, with half-maximal inhibitory concentrations of 0.6-0.9 µM. It is concluded that Con-3 and Con-7 act as cytotoxic "prodrugs" in which mitoxantrone is delivered in a GnRH-R-specific manner and constitute a new class of lead compounds for use as anticancer drugs targeting ovarian tumors.


Assuntos
Apoptose , Proliferação de Células , Hormônio Liberador de Gonadotropina , Mitoxantrona , Neoplasias Ovarianas , Receptores LHRH , Humanos , Mitoxantrona/farmacologia , Mitoxantrona/química , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Receptores LHRH/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos
3.
BMC Genomics ; 25(1): 787, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143522

RESUMO

BACKGROUND/OBJECTIVES: This study aims to elucidate the genetic causes of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder resulting in GnRH deficiency, in six families from Pakistan. METHODS: Eighteen DNA samples from six families underwent genome sequencing followed by standard evaluation for pathogenic single nucleotide variants (SNVs) and small indels. All families were subsequently analyzed for pathogenic copy number variants (CNVs) using CoverageMaster. RESULTS: Novel pathogenic homozygous SNVs in known CHH genes were identified in four families: two families with variants in GNRHR, and two others harboring KISS1R variants. Subsequent investigation of CNVs in the remaining two families identified novel unique large deletions in ANOS1. CONCLUSION: A combined, systematic analysis of single nucleotide and CNVs helps to improve the diagnostic yield for variants in patients with CHH.


Assuntos
Variações do Número de Cópias de DNA , Hipogonadismo , Linhagem , Polimorfismo de Nucleotídeo Único , Humanos , Hipogonadismo/genética , Paquistão , Masculino , Feminino , Receptores de Kisspeptina-1/genética , Sequenciamento Completo do Genoma , Receptores LHRH/genética , Adulto , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso , Proteínas da Matriz Extracelular
4.
Artigo em Inglês | MEDLINE | ID: mdl-38969290

RESUMO

Previous studies have revealed the stimulatory and inhibitory actions of gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH) on the control of reproduction in European sea bass (Dicentrarchus labrax) and other vertebrates, respectively. However, information on the possible interactions between GnRH and GnIH on cell signaling is sparse in vertebrates. In the current study, we investigated if activation of sea bass GnIH receptor (GnIHR) can interfere with GnRH receptor II-1a (GnRHR-II-1a) involving the PKA pathway. Our results showed that GnIH and GnRH functioned via their cognate receptors, respectively. However, it appears that neither GnIH1 nor GnIH2 can block GnRH/GnRHR-II-1a-induced PKA signaling in sea bass. This is the first study to examine the potential interactions of GnIH with GnRH receptor signaling in teleosts. Further research seems necessary to shed light on unknown interactions in other signaling pathways and other GnIH/GnRH receptors involved in the physiological functions of these two relevant neuropeptides, not only in sea bass but also in other species.


Assuntos
Bass , Hormônio Liberador de Gonadotropina , Receptores LHRH , Transdução de Sinais , Animais , Bass/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores LHRH/metabolismo , Hormônios Hipotalâmicos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética
5.
Elife ; 122024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078397

RESUMO

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.


Assuntos
Epistasia Genética , Proteínas de Membrana , Dobramento de Proteína , Receptores LHRH , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores LHRH/química , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Mutação , Estabilidade Proteica , Membrana Celular/metabolismo
6.
Front Endocrinol (Lausanne) ; 15: 1396805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010903

RESUMO

Introduction: Normosmic isolated hypogonadotropic hypogonadism (nIHH) is a clinically and genetically heterogeneous disorder. Deleterious variants in over 50 genes have been implicated in the etiology of IHH, which also indicates a possible role of digenicity and oligogenicity. Both classes of genes controlling GnRH neuron migration/development and hypothalamic/pituitary signaling and development are strongly implicated in nIHH pathogenesis. The study aimed to investigate the genetic background of nIHH and further expand the genotype-phenotype correlation. Methods: A total of 67 patients with nIHH were enrolled in the study. NGS technology and a 38-gene panel were applied. Results: Causative defects regarded as at least one pathogenic/likely pathogenic (P/LP) variant were found in 23 patients (34%). For another 30 individuals, variants of unknown significance (VUS) or benign (B) were evidenced (45%). The most frequently mutated genes presenting P/LP alterations were GNRHR (n = 5), TACR3 (n = 3), and CHD7, FGFR1, NSMF, BMP4, and NROB1 (n = 2 each). Monogenic variants with solid clinical significance (P/LP) were observed in 15% of subjects, whereas oligogenic defects were detected in 19% of patients. Regarding recurrence, 17 novel pathogenic variants affecting 10 genes were identified for 17 patients. The most recurrent pathogenic change was GNRHR:p.Arg139His, detected in four unrelated subjects. Another interesting observation is that P/LP defects were found more often in genes related to hypothalamic-pituitary pathways than those related to GnRH. Conclusions: The growing importance of the neuroendocrine pathway and related genes is drawing increasing attention to nIHH. However, the underestimated potential of VUS variants in IHH etiology, particularly those presenting recurrence, should be further elucidated.


Assuntos
Hormônio Liberador de Gonadotropina , Hipogonadismo , Humanos , Hormônio Liberador de Gonadotropina/genética , Masculino , Feminino , Hipogonadismo/genética , Adulto , Adulto Jovem , Adolescente , Transdução de Sinais/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Mutação , Pessoa de Meia-Idade , Receptores LHRH/genética , Estudos de Associação Genética , Criança
7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3288-3294, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041091

RESUMO

This study aimed to explore the regulating effect of Gegen Decoction(GGD) on the hypothalamic-pituitary-ovarian axis(HPOA) dysfunction in the mouse model of primary dysmenorrhea(PD). The mouse model of PD with periodic characteristics was established by administration of estradiol benzoate and oxytocin. Mice were randomized into control, model, GGD, and ibuprofen groups. The writhing response, hypothalamus index, pituitary index, ovary index, and uterus index were observed and determined. The serum levels of prostaglandin F_(2α)(PGF_(2α)), gonadotropin-releasing hormone(GnRH), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and estrogen(E_2) levels were measured by ELISA kits. Western blot and qPCR were employed to determine the protein and mRNA levels, respectively, of gonadotropin-releasing hormone receptor(GnRH-R) in the pituitary tissue, follicle-stimulating hormone receptor(FSHR) and luteinizing hormone receptor(LHR) in the ovarian tissue, and estrogen receptor(ER) in the uterine tissue. The results showed that the writhing response, serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, ovarian and uterine indexes, the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue were significantly increased in the model group compared with those in the control group. GGD inhibited the writhing response, reduced the serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, decreased the ovarian and uterine indexes, and down-regulated the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue. The data suggested that GGD can regulate the HPOA and inhibit E_2 generation in the mice experiencing recurrent PD by down-regulating the expression of proteins and genes related to HPOA axis, thus exerting the therapeutic effect on PD.


Assuntos
Medicamentos de Ervas Chinesas , Dismenorreia , Ovário , Animais , Feminino , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Dismenorreia/tratamento farmacológico , Dismenorreia/metabolismo , Dismenorreia/genética , Dismenorreia/fisiopatologia , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Humanos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo
8.
J Med Chem ; 67(14): 12386-12398, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38995618

RESUMO

Breast cancer, globally the most common cancer in women, presents significant challenges in treatment. Breast-conserving surgery (BCS), a less traumatic and painful alternative to radical mastectomy, not only preserves the breast's appearance but also supports postsurgical functional recovery. However, accurately identifying tumors, precisely delineating margins, and thoroughly removing metastases remain complex surgical challenges, exacerbated by the limitations of current imaging techniques, including poor tumor uptake and low signal contrast. Addressing these challenges, our study developed a series of GnRHR-targeted probes (YQGN-n) for fluorescence imaging and surgical navigation of breast cancer through a drug repositioning strategy. Notably, YQGN-7, with its high cellular affinity (Kd of 217.8 nM), demonstrates exceptional selectivity and specificity for breast cancer tumors, surpassing traditional imaging agents like ICG in tumor uptake and pharmacokinetic properties. Furthermore, YQGN-7's effectiveness in surgical navigation, both for primary breast tumors and metastases, highlights its potential as a revolutionary tool in BCS.


Assuntos
Neoplasias da Mama , Corantes Fluorescentes , Hormônio Liberador de Gonadotropina , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Corantes Fluorescentes/química , Animais , Hormônio Liberador de Gonadotropina/química , Camundongos , Imagem Óptica , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Camundongos Nus , Receptores LHRH/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos BALB C
9.
Physiol Behav ; 283: 114609, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851441

RESUMO

The neuropeptide kisspeptin (Kiss) is crucial in regulating the hypothalamic-pituitary-gonadal axis. It is produced by two main groups of neurons in the hypothalamus: the rostral periventricular region around the third ventricle and the arcuate nucleus. Kiss is the peptide product of the KiSS-1 gene and serves as the endogenous agonist for the GPR54 receptor. The Kiss/GPR54 system functions as a critical regulator of the reproductive system. Thus, we examined the effect of intracerebroventricular administration of 3 µg of Kiss to the right lateral ventricle of ovariectomized rats primed with a dose of 5 µg subcutaneous (sc) of estradiol benzoate (EB). Kiss treatment increased the lordosis quotient at all times tested. However, the lordosis reflex score was comparatively lower yet still significant compared to the control group. To investigate receptor specificity and downstream mechanisms on lordosis, we infused 10 µg of GPR54 receptor antagonist, Kiss-234, 5 µg of the progestin receptor antagonist, RU486, or 3 µg of antide, a gonadotropin-releasing hormone-1 (GnRH-1) receptor antagonist, to the right lateral ventricle 30 min before an infusion of 3 µg of Kiss. Results demonstrated a significant reduction in the facilitation of lordosis behavior by Kiss at 60 and 120 min when Kiss-234, RU486, or antide were administered. These findings suggest that Kiss stimulates lordosis expression by activating GPR54 receptors on GnRH neurons and that Kiss/GPR54 system is an essential intermediary by which progesterone activates GnRH.


Assuntos
Estradiol , Kisspeptinas , Receptores LHRH , Receptores de Progesterona , Comportamento Sexual Animal , Animais , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Feminino , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo , Ratos , Estradiol/farmacologia , Estradiol/análogos & derivados , Receptores de Progesterona/metabolismo , Receptores de Progesterona/efeitos dos fármacos , Receptores de Progesterona/antagonistas & inibidores , Ovariectomia , Ratos Wistar , Progesterona/farmacologia , Antagonistas de Hormônios/farmacologia , Postura/fisiologia , Receptores de Kisspeptina-1/metabolismo , Mifepristona/farmacologia
10.
Mol Pharm ; 21(8): 4128-4146, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920398

RESUMO

Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized. D-P-HLH-coated and anticancer drug doxorubicin (DX)-loaded solid lipid nanoparticles (F-DX-SLN) were formulated by the cold homogenization technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, dynamic light scattering, electron microscopy, entrapment efficiency, and drug-release profile studies. F-DX-SLN allows site-specific DX delivery by reducing the side effects of chemotherapy. Cancer cells could precisely take up F-DX-SLN by targeting specific receptors, boosting the cytotoxicity at the tumor site. The efficacy of F-DX-SLN on PC3/SKBR3 cells by the MTT assay revealed that F-DX-SLN was more cytotoxic than DX and/or DX-SLN. Flow cytometry and confocal microscopic studies further support F-DX-SLNs' increased intracellular absorption capability in targeting LHRH overexpressed cancer cells. F-DX-SLN ensured high apoptotic potential, noticeably larger mitochondrial transmembrane depolarization action, as well as the activation of caspases, a longer half-life, and greater plasma concentration. F-DX-SLN/DX-SLN was radiolabeled with technetium-99m; scintigraphic imaging studies established its tumor selectivity in PC3 tumor-bearing nude mice. The efficacy of the formulations in cancer treatment, in vivo therapeutic efficacy tests, and histopathological studies were also conducted. Results clearly indicate that F-DX-SLN exhibits sustained and superior targeted administration of anticancer drugs, thus opening up the possibility of a drug delivery system with precise control and targeting effects. F-DX-SLN could also provide a nanotheranostic approach with improved efficacy for prostate cancer therapy.


Assuntos
Doxorrubicina , Hormônio Liberador de Gonadotropina , Lipídeos , Nanopartículas , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Masculino , Animais , Hormônio Liberador de Gonadotropina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Lipídeos/química , Camundongos Nus , Portadores de Fármacos/química , Polietilenoglicóis/química , Liberação Controlada de Fármacos , Células PC-3 , Receptores LHRH/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Apoptose/efeitos dos fármacos
11.
Theriogenology ; 223: 89-97, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692038

RESUMO

The present study investigates the distribution and dynamics of gonadotropin-releasing hormone I (GnRH I) and bradykinin in the air-breathing catfish, Heteropneustes fossilis, in relation to the reproductive cycle. Changes in bradykinin, bradykinin B2-receptor, and ovarian GnRH I regulation were demonstrated during the reproductive cycle. The localization of GnRH I, bradykinin, and their respective receptors in the ovaries was investigated by immunohistochemistry, while their levels were quantified by slot/western blot followed by densitometry. GnRH I and its receptor were mainly localized in the cytoplasm of oocytes during the early previtellogenic phase. However, as the follicles grew larger, immunoreactivity was observed in the granulosa and theca cells of the late previtellogenic follicles. The ovaries showed significantly higher expression of GnRH I protein and its receptor during the early to mid-previtellogenic phase, suggesting their involvement in follicular development. Bradykinin and bradykinin B2-receptor showed a distribution pattern similar to that of GnRH I and its receptor. This study further suggested the possibility that bradykinin regulates GnRH I synthesis in the ovary. Thus, we show that the catfish ovary has a GnRH-bradykinin system and plays a role in follicular development and oocyte maturation in H. fossilis.


Assuntos
Bradicinina , Peixes-Gato , Hormônio Liberador de Gonadotropina , Ovário , Estações do Ano , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Peixes-Gato/metabolismo , Ovário/metabolismo , Bradicinina/metabolismo , Reprodução/fisiologia , Receptores LHRH/metabolismo , Regulação da Expressão Gênica
12.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562611

RESUMO

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Lipossomos/química , Receptores LHRH , Integrina alfaVbeta3 , Linhagem Celular Tumoral , Camundongos Nus , Paclitaxel/uso terapêutico , Oligopeptídeos/química
13.
J Biochem Mol Toxicol ; 38(4): e23699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532648

RESUMO

The endocrine disruptor hexavalent chromium [Cr(VI)] is a proven reproductive toxicant. We recently demonstrated that prenatal Cr(VI) exposure causes testicular resistance to gonadotropins, resulting in hypergonadotropic hypoandrogenism in F1 rats. However, the mechanism driving hypergonadotropism in F1 rats exposed to Cr(VI) prenatally remains an enigma. Therefore, we hypothesized that 'Prenatal Cr(VI) exposure may disrupt steroid hormones-mediated negative feedback regulation of the hypothalamic GnRH, and its receptor in the pituitary of F1 rats, leading to hypergonadotropism.' We administered potassium dichromate (50, 100, or 200 mg/L) to pregnant rats through drinking water between days 9 and 14, and their male F1 offspring were euthanized at 60 days of age. Prenatal Cr(VI) exposure in F1 rats resulted in the accumulation of Cr in the hypothalamus and pituitary. Western blot detected decreased hypothalamic GnRH, Kisspeptin1, and its receptor GPR54, along with diminished ERα, AR, aromatase, and 5α reductase, and GnRH regulatory transcription factors Pit-1 and GATA-4 proteins. Immunohistochemical studies revealed increased immunopositivity of GnRH receptor, AR, 5α reductase, ERα, ERß, and aromatase proteins in the pituitary, whereas decreased Kisspeptin1, GPR54, and inhibin ß. Our findings imply that Cr(VI) exposure during the prenatal period disrupts the hypothalamic Kisspeptin-GPR54-Pit-1/GATA4-GnRH network, boosting the pituitary GnRH receptor. We conclude that prenatal exposure to Cr(VI) alters GnRH expression in the hypothalamus and its receptor in the pituitary of F1 progeny through interfering with the negative feedback effect of androgens and estrogens.


Assuntos
Cromo , Efeitos Tardios da Exposição Pré-Natal , Receptores LHRH , Feminino , Gravidez , Humanos , Ratos , Masculino , Animais , Receptores LHRH/metabolismo , Receptor alfa de Estrogênio/metabolismo , Aromatase , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Hipotálamo , Hormônio Liberador de Gonadotropina/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1353151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348415

RESUMO

Reproduction in mammals is controlled by hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Recent studies from our laboratory established that the basal ganglia of the human brain contain additional large populations of GnRH synthesizing neurons which are absent in adult mice. Such extrahypothalamic GnRH neurons mostly occur in the putamen where they correspond to subsets of the striatal cholinergic interneurons (ChINs) and express GnRHR autoreceptors. In an effort to establish a mouse model for functional studies of striatal GnRH/GnRHR signaling, we carried out electrophysiological experiments on acute brain slices from male transgenic mice. Using PN4-7 neonatal mice, half of striatal ChINs responded with transient hyperpolarization and decreased firing rate to 1.2 µM GnRH, whereas medium spiny projection neurons remained unaffected. GnRH acted on its specific receptor because no response was observed in the presence of the GnRHR antagonist Antide. Addition of the membrane-impermeable G protein-coupled receptor inhibitor GDP-ß-S to the internal electrode solution eliminated the effect of GnRH. Further, GnRH was able to inhibit ChINs in presence of tetrodotoxin which blocked action potential mediated events. Collectively, these data indicated that the receptor underlying the effects of GnRH in neonatal mice is localized within ChINs. GnRH responsiveness of ChINs was transient and entirely disappeared in adult mice. These results raise the possibility to use neonatal transgenic mice as a functional model to investigate the role of GnRH/GnRHR signaling discovered earlier in adult human ChINs.


Assuntos
Hormônio Liberador de Gonadotropina , Receptores LHRH , Animais , Masculino , Camundongos , Neurônios Colinérgicos , Hormônio Liberador de Gonadotropina/farmacologia , Mamíferos , Camundongos Transgênicos , Transdução de Sinais
15.
Sci Rep ; 14(1): 31, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167999

RESUMO

Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Siloxanas , Receptores LHRH/genética , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hormônio Liberador de Gonadotropina/farmacologia , Linhagem Celular Tumoral
16.
Brain Behav Immun ; 115: 295-307, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884161

RESUMO

GV1001 protects neural cells from amyloid-ß (Aß) toxicity and other stressors in in vitro studies and demonstrates clinically beneficial effects in patients with moderate to severe Alzheimer's disease (AD). Here, we investigated the protective effects and mechanism of action of GV1001 in triple transgenic AD (3xTg-AD) mice. We found that GV1001 improved memory and cognition in middle- and old-aged 3xTg-AD mice. Additionally, it reduced Aß oligomer and phospho-tau (Ser202 and Thr205) levels in the brain, and mitigated neuroinflammation by promoting a neuroprotective microglial and astrocyte phenotype while diminishing the neurotoxic ones. In vitro, GV1001 bound to gonadotropin releasing hormone receptors (GnRHRs) with high affinity. Levels of cyclic adenosine monophosphate, a direct downstream effector of activated GnRHRs, increased after GV1001 treatment. Furthermore, inhibition of GnRHRs blocked GV1001-induced effects. Thus, GV1001 might improve cognitive and memory functions of 3xTg-AD mice by suppressing neuroinflammation and reducing Aß oligomers levels and phospho-tau by activating GnRHRs and their downstream signaling pathways.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Receptores LHRH , Doenças Neuroinflamatórias , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hormônio Liberador de Gonadotropina , Modelos Animais de Doenças
17.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958948

RESUMO

Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.


Assuntos
Hipogonadismo , Síndrome de Klinefelter , Puberdade Tardia , Feminino , Masculino , Humanos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Hipogonadismo/tratamento farmacológico , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Foliculoestimulante
18.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894912

RESUMO

Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/síntese química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Fatores Imunológicos , Terapia de Imunossupressão , Imunossupressores , Mitoxantrona , Neoplasias/tratamento farmacológico , Receptores LHRH/metabolismo
19.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894950

RESUMO

Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.


Assuntos
Caderinas , Fator de Crescimento Epidérmico , Feminino , Humanos , Gravidez , Caderinas/metabolismo , Movimento Celular , Decídua/metabolismo , Endométrio/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores LHRH/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo
20.
Cell Commun Signal ; 21(1): 284, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828510

RESUMO

BACKGROUND: Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS: We used clonal murine pituitary αT3-1 and LßT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LßT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHß. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LßT2 migration responses to GnRH and AXL. RESULTS: We observed AXL, along with the GnRH receptor, expression in αT3-1 and LßT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LßT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LßT2 cells, Gas6/AXL signaling stimulated LHß production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS: Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.


Assuntos
Receptor Tirosina Quinase Axl , Receptores LHRH , Camundongos , Humanos , Animais , Receptores LHRH/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transdução de Sinais , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA