Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.386
Filtrar
1.
Clin Chim Acta ; 564: 119924, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153654

RESUMO

Gitelman syndrome (GS) is the most prevalent genetic tubulopathy characterized by several electrolyte abnormalities, including hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis, and hyperreninemic hyperaldosteronism. These features are caused by a bi-allelic mutation in the SLC12A3 gene. In this report, we present a case of GS in an asymptomatic woman who incidentally exhibited hypokalemia during an antenatal check-up. Her biochemical profile was consistent with GS. Genetic analysis revealed two heterozygous variants in trans, namely, NM_001126108.2:c.625C>T; p.(Arg209Trp) and c.965C>T; p.(Ala322Val). The c.625C>T; p.(Arg209Trp) variant has previously been experimentally confirmed as a loss-of-function (LOF) variant. However, the functional impact of the c.965C>T variant, located at the 5 prime end of exon 8, has not been fully elucidated. Through the utilization of both complementary DNA (cDNA) and minigene analysis, we confirmed that the c.965C>T variant can generate two distinct cDNA transcripts. The first transcript carries a missense mutation, p.(Ala322Val) in the full SLC12A3 transcript, while the second transcript consists of an in-frame deletion of both exons 7 and 8 in the SLC12A3 transcript, in which may result in the loss of transmembrane regions 5 - 6 involved in chloride transport. Our findings provide insights into the intricate mechanisms of splicing, highlighting how a variant in one exon can remotely influence the transcription of an upstream exon, as observed with the variant in exon 8 impacting the transcription of exon 7.


Assuntos
Síndrome de Gitelman , Mutação de Sentido Incorreto , Membro 3 da Família 12 de Carreador de Soluto , Síndrome de Gitelman/genética , Humanos , Membro 3 da Família 12 de Carreador de Soluto/genética , Feminino , Splicing de RNA/genética , Adulto
2.
Gene ; 932: 148876, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39173978

RESUMO

High-throughput sequencing has identified numerous intronic variants in the SCN1A gene in epilepsy patients. Abnormal mRNA splicing caused by these variants can lead to significant phenotypic differences, but the mechanisms of epileptogenicity and phenotypic differences remain unknown. Two variants, c.4853-1 G>C and c.4853-25 T>A, were identified in intron 25 of SCN1A, which were associated with severe Dravet syndrome (DS) and mild focal epilepsy with febrile seizures plus (FEFS+), respectively. The impact of these variants on protein expression, electrophysiological properties of sodium channels and their correlation with epilepsy severity was investigated through plasmid construction and transfection based on the aberrant spliced mRNA. We found that the expression of truncated mutant proteins was significantly reduced on the cell membrane, and retained in the cytoplasmic endoplasmic reticulum. The mutants caused a decrease in current density, voltage sensitivity, and an increased vulnerability of channel, leading to a partial impairment of sodium channel function. Notably, the expression of DS-related mutant protein on the cell membrane was higher compared to that of FEFS+-related mutant, whereas the sodium channel function impairment caused by DS-related mutant was comparatively milder than that caused by FEFS+-related mutant. Our study suggests that differences in protein expression levels and altered electrophysiological properties of sodium channels play important roles in the manifestation of diverse epileptic phenotypes. The presence of intronic splice site variants may result in severe phenotypes due to the dominant-negative effects, whereas non-canonical splice site variants leading to haploinsufficiency could potentially cause milder phenotypes.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Íntrons , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Masculino , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fenótipo , Feminino , Splicing de RNA , Mutação , Células HEK293
3.
Sci Rep ; 14(1): 21215, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261511

RESUMO

Advances in next-generation sequencing technologies have led to elucidation of sensorineural hearing loss genetics and associated clinical impacts. However, studies on the functional pathogenicity of variants of uncertain significance (VUS), despite their close association with clinical phenotypes, are lacking. Here we identified compound heterozygous variants in ESRRB transcription factor gene linked to DFNB35, specifically a novel splicing variant (NM_004452.4(ESRRB): c.397 + 2T>G) in trans with a missense variant (NM_004452.4(ESRRB): c.1144C>T p.(Arg382Cys)) whose pathogenicity remains unclear. The splicing variant (c.397 + 2T>G) caused exon 4 skipping, leading to premature stop codon formation and nonsense-mediated decay. The p.(Arg382Cys) variant was classified as a VUS due to its particularly higher allele frequency among East Asian population despite disease-causing in-silico predictions. However, functional assays showed that p.(Arg382Cys) variant disrupted key intramolecular interactions, leading to protein instability. This variant also reduced transcriptional activity and altered expression of downstream target genes essential for inner ear function, suggesting genetic contribution to disease phenotype. This study expanded the phenotypic and genotypic spectrum of ESRRB in DFNB35 and revealed molecular mechanisms underlying ESRRB-associated DFNB35. These findings suggest that variants with high allele frequencies can also possess functional pathogenicity, providing a breakthrough for cases where VUS, previously unexplored, could be reinterpreted by elucidating their functional roles and disease-causing characteristics.


Assuntos
Perda Auditiva Neurossensorial , Receptores de Estrogênio , Feminino , Humanos , Masculino , Códon sem Sentido/genética , Frequência do Gene , Predisposição Genética para Doença , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Linhagem , Splicing de RNA/genética , Receptores de Estrogênio/genética
4.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273386

RESUMO

In vitro circular RNA (circRNA) preparation methods have been gaining a lot of attention recently as several reports suggest that circRNAs are more stable, with better performances in cells and in vivo, than linear RNAs in various biomedical applications. Self-splicing ribozymes are considered a major in vitro circRNA generation method for biomedical applications due to their simplicity and efficiency in the circularization of the gene of interest. This review summarizes, updates, and discusses the recently developed self-circularization methods based on the self-splicing ribozyme, such as group I and II intron ribozymes, and the pros and cons of each method in preparing circRNA in vitro.


Assuntos
RNA Catalítico , RNA Circular , RNA Catalítico/metabolismo , RNA Catalítico/genética , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Splicing de RNA , Animais , RNA/genética , RNA/metabolismo , Íntrons/genética
5.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273516

RESUMO

The contribution of splicing variants to molecular diagnostics of inherited diseases is reported to be less than 10%. This figure is likely an underestimation due to several factors including difficulty in predicting the effect of such variants, the need for functional assays, and the inability to detect them (depending on their locations and the sequencing technology used). The aim of this study was to assess the utility of Nanopore sequencing in characterizing and quantifying aberrant splicing events. For this purpose, we selected 19 candidate splicing variants that were identified in patients affected by inherited retinal dystrophies. Several in silico tools were deployed to predict the nature and estimate the magnitude of variant-induced aberrant splicing events. Minigene assay or whole blood-derived cDNA was used to functionally characterize the variants. PCR amplification of minigene-specific cDNA or the target gene in blood cDNA, combined with Nanopore sequencing, was used to identify the resulting transcripts. Thirteen out of nineteen variants caused aberrant splicing events, including cryptic splice site activation, exon skipping, pseudoexon inclusion, or a combination of these. Nanopore sequencing allowed for the identification of full-length transcripts and their precise quantification, which were often in accord with in silico predictions. The method detected reliably low-abundant transcripts, which would not be detected by conventional strategies, such as RT-PCR followed by Sanger sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Distrofias Retinianas , Humanos , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Processamento Alternativo/genética , Splicing de RNA/genética , Éxons/genética
6.
Proc Natl Acad Sci U S A ; 121(37): e2401531121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226364

RESUMO

Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.


Assuntos
Neurônios Motores , Proteínas de Ligação a RNA , Medula Espinal , Transcriptoma , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neurônios Motores/metabolismo , Camundongos , Medula Espinal/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Splicing de RNA , Camundongos Knockout
7.
Front Immunol ; 15: 1446081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238643

RESUMO

The regulatory serine protease, complement factor I (FI), in conjunction with one of its cofactors (FH, C4BP, MCP, or CR1), plays an essential role in controlling complement activity through inactivation of C3b and C4b. The functional impact by missense variants in the CFI gene, particularly those with minor allele frequencies of 0.01% to 0.1%, is infrequently studied. As such, these variants are typically classified as variants of uncertain significance (VUS) when they are identified by clinical testing. Herein, we utilized a minigene splicing assay to assess the functional impact of 36 ultra-rare variants of CFI. These variants were selected based on their minor allele frequencies (MAF) and their association with low-normal FI levels. Four variants lead to aberrant splicing-one 5' consensus splice site (NM_000204.5: c.1429G>C, p.Asp477His) and three exonic changes (c.355G>A, p.Gly119Arg; c.472G>A, p.Gly158Arg; and c.950G>A, p.Arg317Gln)-enabling their reclassification to likely pathogenic (LP) or pathogenic (P) based on ACMG guidelines. These findings underscore the value of functional assays, such as the minigene assay, in assessing the clinical relevance of rare variants in CFI.


Assuntos
Fator I do Complemento , Humanos , Fator I do Complemento/genética , Frequência do Gene , Splicing de RNA , Mutação de Sentido Incorreto , Feminino , Masculino , Variação Genética
8.
Nat Commun ; 15(1): 7696, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227617

RESUMO

Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs). The sequestration of DBR1 by SIC enhances the accumulation of lariRNAs, branched circular RNAs derived from excised introns during pre-mRNA splicing, which in turn promote the transcription of their parental genes. Our findings further demonstrate that SIC-mediated DBR1 sequestration in SGs is crucial for plant HS tolerance, as deletion of the N-terminus of SIC (SIC1-244) impairs DBR1 sequestration and compromises plant response to HS. Overall, our study unveils a mechanism of transcriptional regulation in the HS response, where lariRNAs are enriched through DBR1 sequestration, ultimately promoting the transcription of heat stress tolerance genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Íntrons , Splicing de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resposta ao Choque Térmico/genética , Íntrons/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , RNA de Plantas/metabolismo , RNA de Plantas/genética , Termotolerância/genética , RNA Circular/metabolismo , RNA Circular/genética , Plantas Geneticamente Modificadas
9.
Genome Med ; 16(1): 110, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252027

RESUMO

BACKGROUND: RNA sequencing (RNA-seq) is increasingly being used as a complementary tool to DNA sequencing in diagnostics where DNA analysis has been uninformative. RNA-seq enables the identification of aberrant splicing and aberrant gene expression, improving the interpretation of variants of unknown significance (VUSs), and provides the opportunity to scan the transcriptome for aberrant splicing and expression in relevant genes that may be the cause of a patient's phenotype. This work aims to investigate the feasibility of generating new diagnostic candidates in patients without a previously reported VUS using an RNA-seq-centric approach. METHODS: We systematically assessed the transcriptomic profiles of 86 patients with suspected Mendelian disorders, 38 of whom had no candidate sequence variant, using RNA from blood samples. Each VUS was visually inspected to search for splicing abnormalities. Once aberrant splicing was identified in cases with VUS, multiple open-source alternative splicing tools were used to investigate if they would identify what was observed in IGV. Expression outliers were detected using OUTRIDER. Diagnoses in cases without a VUS were explored using two separate strategies. RESULTS: RNA-seq allowed us to assess 71% of VUSs, detecting aberrant splicing in 14/48 patients with a VUS. We identified four new diagnoses by detecting novel aberrant splicing events in patients with no candidate sequence variants from prior DNA testing (n = 32) or where the candidate VUS did not affect splicing (n = 23). An additional diagnosis was made through the detection of skewed X-inactivation. CONCLUSION: This work demonstrates the utility of an RNA-centric approach in identifying novel diagnoses in patients without candidate VUSs. It underscores the utility of blood-based RNA analysis in improving diagnostic yields and highlights optimal approaches for such analyses.


Assuntos
Doenças Genéticas Inatas , Humanos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Processamento Alternativo , Splicing de RNA
10.
Clin Transl Med ; 14(9): e1788, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243148

RESUMO

BACKGROUND: Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT: Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION: This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.


Assuntos
Neoplasias , Fatores de Processamento de RNA , Humanos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Progressão da Doença , Processamento Alternativo/genética , Splicing de RNA/genética
11.
Genome Biol ; 25(1): 229, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237934

RESUMO

Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.


Assuntos
Splicing de RNA , Análise de Célula Única , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estabilidade de RNA , Prosencéfalo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Feminino
12.
Clin Genet ; 106(4): 437-447, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221575

RESUMO

Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.


Assuntos
Astenozoospermia , Consanguinidade , Homozigoto , Linhagem , Splicing de RNA , Cauda do Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patologia , Sequenciamento do Exoma , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Splicing de RNA/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Espermatozoides/ultraestrutura , Espermatozoides/patologia
13.
Mol Genet Genomic Med ; 12(9): e70004, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219382

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a complex genetic systemic connective tissue disorder. It is well known that genetic factors play a critical role in the progression of MFS, with nearly all cases attributed to variants in the FBN1 gene. METHODS: We investigated a Chinese family with MFS spanning two generations. Whole exome sequencing, in silico analysis, minigene constructs, transfection, RT-PCR, and protein secondary structure analysis were used to analyze the genotype of the proband and his father. RESULTS: The main clinical manifestations of the proband and his father were subluxation of the left lens and high myopia with pectus deformity. Whole exome sequencing identified a novel single nucleotide variant (SNV) in the FBN1 gene at a non-canonical splice site, c.443-3C>G. This variant resulted in two abnormal mRNA transcripts, leading to a frameshift and an in-frame insertion. Further in vitro experiments indicated that the c.443-3C>G variant in FBN1 was pathogenic and functionally harmful. CONCLUSION: This research identified a novel intronic pathogenic FBN1: c.443-3C>G gene variant, which led to two different aberrant splicing effects. Further functional analysis expands the variant spectrum and provides a strong indication and sufficient basis for preimplantation genetic testing for monogenic disease (PGT-M).


Assuntos
Fibrilina-1 , Heterozigoto , Íntrons , Síndrome de Marfan , Linhagem , Splicing de RNA , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Fibrilina-1/genética , Masculino , Adulto , Feminino , Adipocinas
14.
Funct Integr Genomics ; 24(5): 156, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230785

RESUMO

The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Plântula , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Processamento Alternativo , Análise de Sequência de RNA
15.
RNA Biol ; 21(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39257052

RESUMO

CircRNAs are an important class of RNAs with diverse cellular functions in human physiology and disease. A thorough knowledge of circRNAs including their biogenesis and subcellular distribution is important to understand their roles in a wide variety of processes. However, the analysis of circRNAs from total RNA sequencing data remains challenging. Therefore, we developed Calcifer, a versatile workflow for circRNA annotation. Using Calcifer, we analysed APEX-Seq data to compare circRNA occurrence between whole cells, nucleus and subnuclear compartments. We generally find that circRNAs show higher abundance in whole cells compared to nuclear samples, consistent with their accumulation in the cytoplasm. The notable exception is the single-exon circRNA circCANX(9), which is unexpectedly enriched in the nucleus. In addition, we observe that circFIRRE prevails over the linear lncRNA FIRRE in both the cytoplasm and the nucleus. Zooming in on the subnuclear compartments, we show that circRNAs are strongly depleted from nuclear speckles, indicating that excess splicing factors in this compartment counteract back-splicing. Our results thereby provide valuable insights into the subnuclear distribution of circRNAs. Regarding circRNA function, we surprisingly find that the majority of all detected circRNAs possess complete open reading frames with potential for cap-independent translation. Overall, we show that Calcifer is an easy-to-use, versatile and sustainable workflow for the annotation of circRNAs which expands the repertoire of circRNA tools and allows to gain new insights into circRNA distribution and function.


Assuntos
Núcleo Celular , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Citoplasma/genética , Fases de Leitura Aberta , Anotação de Sequência Molecular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Splicing de RNA , Biologia Computacional/métodos , Análise de Sequência de RNA
16.
Bioinformatics ; 40(8)2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39152995

RESUMO

MOTIVATION: Spaln is the earliest practical tool for self-sufficient genome mapping and spliced alignment of protein query sequences onto a mammalian-sized eukaryotic genomic sequence. However, its computational speed has become inadequate for the analysis of rapidly growing genomic and transcript sequence data. RESULTS: The dynamic programming calculation of Spaln has been sped up in two ways: (i) the introduction of the multi-intermediate unidirectional Hirschberg method and (ii) SIMD-based vectorization. The new version, Spaln3, is ∼7 times faster than the latest Spaln version 2, and its gene prediction accuracy is consistently higher than that of Miniprot. AVAILABILITY AND IMPLEMENTATION: https://github.com/ogotoh/spaln.


Assuntos
Mapeamento Cromossômico , Software , Mapeamento Cromossômico/métodos , Alinhamento de Sequência/métodos , Splicing de RNA , Algoritmos , Animais , Humanos , Genoma , Proteínas/genética , Proteínas/química , Genômica/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-39127314

RESUMO

Mitochondrial function can be regulated by ion channels. Mitochondrial RNA splicing 2 (Mrs2) is a magnesium ion (Mg2+) channel located in the inner mitochondrial membrane, thereby mediating the Mg2+ influx into the mitochondrial matrix. However, its potential role in regulating the Mg homeostasis and mitochondrial function in aquatic species is still unclear. This study molecularly characterizes the gene encoding Mrs2 in fish M. amblycephala with its functions in maintaining the Mg homeostasis and mitochondrial function verified. The mrs2 gene is 2133 bp long incorporating a 1269 bp open reading frame, which encodes 422 amino acids. The Mrs2 protein includes two transmembrane domains and a conserved tripeptide Gly-Met-Asn, and has a high homology (65.92-97.64%) with those of most vertebrates. The transcript of mrs2 was relatively high in the white muscle, liver and kidney. The inhibition of mrs2 reduces the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the activities of mitochondrial complex I and V in hepatocytes. However, the over-expression of mrs2 increases the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the complex V activity, but decreases the activities of mitochondrial complex III and IV and citrate synthase in hepatocytes. Collectively, Mrs2 is highly conserved among different species, and is prerequisite for maintaining Mg homeostasis and mitochondrial function in fish.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Homeostase , Magnésio , Mitocôndrias , Animais , Magnésio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Filogenia , Sequência de Bases , Splicing de RNA
18.
Curr Opin Struct Biol ; 88: 102907, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168044

RESUMO

Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.


Assuntos
Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/química , Humanos , Splicing de RNA , Ligação Proteica , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Modelos Moleculares
19.
Biophys Chem ; 314: 107307, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173313

RESUMO

The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.


Assuntos
Íntrons , Sítios de Splice de RNA , Splicing de RNA , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Animais
20.
Virol J ; 21(1): 175, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107824

RESUMO

BACKGROUND: Hemorrhagic enteritis, caused by Turkey Hemorrhagic Enteritis Virus (THEV), is a disease affecting turkey poults characterized by immunosuppression and bloody diarrhea. An avirulent THEV strain that retains the immunosuppressive ability is used as a live vaccine. Characterizing the splice map of THEV is an essential step that would allow studies of individual genes mediating its immunosuppressive functions. We used RNA sequencing to characterize the splice map of THEV for the first time, providing key insights into the THEV gene expression and mRNA structures. METHODS: After infecting a turkey B-cell line with the vaccine strain, samples in triplicates were collected at 4-, 12-, 24-, and 72-hours post-infection. Total RNA was extracted, and poly-A-tailed mRNA sequenced. Reads were mapped to the THEV genome after trimming and transcripts assembled with StringTie. We performed PCR of THEV cDNA, cloned the PCR products, and used Sanger sequencing to validate all identified splice junctions. RESULTS: Researchers previously annotated the THEV genome as encoding 23 open reading frames (ORFs). We identified 29 spliced transcripts from our RNA sequencing data, all containing novel exons although some exons matched some previously annotated ORFs. The three annotated splice junctions were also corroborated by our data. During validation we identified five additional unique transcripts, a subset of which were further validated by 3' rapid amplification of cDNA ends (3' RACE). Thus, we report that the genome of THEV contains 34 transcripts with the coding capacity for all annotated ORFs. However, we found six of the previously annotated ORFs to be truncated ORFs on the basis of the identification of an in-frame upstream start codon or the detection of additional coding exons. We also identified three of the annotated ORFs with longer or shorter isoforms, and seven novel unannotated ORFs that could potentially be translated; although it is beyond the scope of this manuscript to investigate whether they are translated. CONCLUSIONS: Similar to human adenoviruses, all THEV transcripts are spliced and organized into five transcription units under the control of their cognate promoters. The genes are expressed under temporal regulation and THEV also produces multiple distinctly spliced transcripts that code for the same protein. Studies of the newly identified potential proteins should be urgently performed as these proteins may have roles in THEV-induced immunosuppression. Also, knowing the splicing of THEV genes should be invaluable to future research focusing on studying THEV genes, as this will allow accurate cloning of the mRNAs.


Assuntos
Fases de Leitura Aberta , Perus , Animais , Perus/virologia , Coronavirus do Peru/genética , RNA Mensageiro/genética , Splicing de RNA , Genoma Viral , Linhagem Celular , RNA Viral/genética , Doenças das Aves Domésticas/virologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA