Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.957
Filtrar
1.
PLoS Genet ; 20(9): e1011373, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226307

RESUMO

Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. Simultaneously, microtubule dynamics must be precisely controlled to maintain spindle length and organization. How forces and dynamics are tuned to create a stable bipolar structure is poorly understood. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. We found that ZYG-8 depletion from oocytes resulted in overelongated spindles with pole and midspindle defects. Importantly, experiments with monopolar spindles revealed that ZYG-8 depletion led to excess outward forces within the spindle and suggested a potential role for this protein in regulating the force-generating motor BMK-1/kinesin-5. Further, we found that ZYG-8 is also required for proper microtubule dynamics within the oocyte spindle and that kinase activity is required for its function during both meiosis and mitosis. Altogether, our findings reveal new roles for ZYG-8 in oocytes and provide insights into how acentrosomal spindles are stabilized to promote faithful meiosis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Microtúbulos , Oócitos , Fuso Acromático , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Microtúbulos/metabolismo , Microtúbulos/genética , Fuso Acromático/metabolismo , Fuso Acromático/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Oócitos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
J Cell Sci ; 137(16)2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092789

RESUMO

The structure of the sperm flagellar axoneme is highly conserved across species and serves the essential function of generating motility to facilitate the meeting of spermatozoa with the egg. During spermiogenesis, the axoneme elongates from the centrosome, and subsequently the centrosome docks onto the nuclear envelope to continue tail biogenesis. Mycbpap is expressed predominantly in mouse and human testes and conserved in Chlamydomonas as FAP147. A previous cryo-electron microscopy analysis has revealed the localization of FAP147 to the central apparatus of the axoneme. Here, we generated Mycbpap-knockout mice and demonstrated the essential role of Mycbpap in male fertility. Deletion of Mycbpap led to disrupted centrosome-nuclear envelope docking and abnormal flagellar biogenesis. Furthermore, we generated transgenic mice with tagged MYCBPAP, which restored the fertility of Mycbpap-knockout males. Interactome analyses of MYCBPAP using Mycbpap transgenic mice unveiled binding partners of MYCBPAP including central apparatus proteins, such as CFAP65 and CFAP70, which constitute the C2a projection, and centrosome-associated proteins, such as CCP110. These findings provide insights into a MYCBPAP-dependent regulation of the centrosome-nuclear envelope docking and sperm tail biogenesis.


Assuntos
Centrossomo , Camundongos Knockout , Membrana Nuclear , Cauda do Espermatozoide , Animais , Masculino , Membrana Nuclear/metabolismo , Centrossomo/metabolismo , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Camundongos , Espermatogênese/genética , Camundongos Transgênicos , Fertilidade , Axonema/metabolismo , Axonema/ultraestrutura , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
3.
Elife ; 122024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092485

RESUMO

The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Centrossomo/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Divisão Celular , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Células HeLa
4.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137170

RESUMO

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Microtúbulos , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Animais , Microtúbulos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Centrossomo/metabolismo , Proliferação de Células , Movimento Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Tubulina (Proteína)/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética
5.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136544

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Diferenciação Celular , Mitose , Osteoblastos/citologia , Osteoblastos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Divisão Celular Assimétrica , Lisossomos/metabolismo , Centrossomo/metabolismo , Antígenos CD34/metabolismo , Complexo de Golgi/metabolismo , Divisão Celular
6.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39012627

RESUMO

Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Microtúbulos , Proteínas Serina-Treonina Quinases , Fuso Acromático , Centrossomo/metabolismo , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Microtúbulos/metabolismo , Quinase 1 Polo-Like , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Células Epiteliais/metabolismo , Linhagem Celular , Divisão Celular , Tubulina (Proteína)/metabolismo , Fibroblastos/metabolismo , Antígenos , Proteínas do Tecido Nervoso
7.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074902

RESUMO

After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: "BP" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and "MP" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.


Assuntos
Centrossomo , Cinesinas , Mitose , Fuso Acromático , Cinesinas/metabolismo , Cinesinas/genética , Centrossomo/metabolismo , Humanos , Mitose/genética , Fuso Acromático/metabolismo , Duplicação Gênica , Microtúbulos/metabolismo , Linhagem Celular , Cinetocoros/metabolismo , Genoma Humano
8.
Mol Biol Cell ; 35(8): ar112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985524

RESUMO

Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.


Assuntos
Centrossomo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fuso Acromático , Corpos Polares do Fuso , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Corpos Polares do Fuso/metabolismo , Centrossomo/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos/metabolismo , Calmodulina/metabolismo , Ligação Proteica
9.
Mol Biol Cell ; 35(9): ar116, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024292

RESUMO

Ninein (Nin) is a microtubule (MT) anchor at the subdistal appendages of mother centrioles and the pericentriolar material (PCM) of centrosomes that also functions to organize MTs at noncentrosomal MT-organizing centers (ncMTOCs). In humans, the NIN gene is mutated in Seckel syndrome, an inherited developmental disorder. Here, we dissect the protein domains involved in Nin's localization and interactions with dynein and ensconsin (ens/MAP7) and show that the association with ens cooperatively regulates MT assembly in Drosophila fat body cells. We define domains of Nin responsible for its localization to the ncMTOC on the fat body cell nuclear surface, localization within the nucleus, and association with Dynein light intermediate chain (Dlic) and ens, respectively. We show that Nin's association with ens synergistically regulates MT assembly. Together, these findings reveal novel features of Nin function and its regulation of a ncMTOC.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Dineínas , Proteínas Associadas aos Microtúbulos , Centro Organizador dos Microtúbulos , Microtúbulos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Animais , Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Centrossomo/metabolismo , Domínios Proteicos , Humanos , Corpo Adiposo/metabolismo , Drosophila/metabolismo , Núcleo Celular/metabolismo , Centríolos/metabolismo , Ligação Proteica , Proteínas de Homeodomínio
10.
Nat Commun ; 15(1): 5794, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987258

RESUMO

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.


Assuntos
Centrossomo , Cinetocoros , Plasmodium falciparum , Proteínas de Protozoários , Fuso Acromático , Cinetocoros/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Centrossomo/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fuso Acromático/metabolismo , Humanos , Merozoítos/metabolismo , Merozoítos/fisiologia , Mitose , Centrômero/metabolismo , Membrana Nuclear/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo
11.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39024157

RESUMO

The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.


Assuntos
Centrossomo , Córtex Cerebral , Células-Tronco Neurais , Neurogênese , Animais , Centrossomo/metabolismo , Córtex Cerebral/citologia , Células-Tronco Neurais/fisiologia , Camundongos , Neurogênese/fisiologia
12.
Eur J Cell Biol ; 103(3): 151439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968704

RESUMO

Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.


Assuntos
Centrossomo , Células-Tronco Embrionárias Murinas , Proteínas Serina-Treonina Quinases , Animais , Centrossomo/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Fosforilação
13.
Cell Death Dis ; 15(7): 544, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085203

RESUMO

UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.


Assuntos
Cinesinas , Mitose , Fuso Acromático , Ubiquitinação , Humanos , Fuso Acromático/metabolismo , Células HeLa , Cinesinas/metabolismo , Cinesinas/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Células HEK293 , Centrossomo/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas
14.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892227

RESUMO

The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.


Assuntos
Centrossomo , Cílios , Histona-Lisina N-Metiltransferase , Transporte Proteico , Cílios/metabolismo , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Centrossomo/metabolismo , Animais , Flagelos/metabolismo , Camundongos , Proteínas Associadas a Centrossomos
15.
Biol Cell ; 116(7): e2400048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850178

RESUMO

BACKGROUND INFORMATION: The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole. This asymmetry determines the main orientation of the microtubule network and intra-cellular traffic. However, the mechanism regulating centrosome positioning at the apical pole of polarized epithelial cells is still poorly undertood. RESULTS: In this study we used transcriptomic data from breast cancer cells to identify molecular changes associated with the different stages of tumour transformation. We correlated these changes with variations in centrosome position or with cell progression along the epithelial-to-mesenchymal transition (EMT), a process that involves centrosome repositioning. We found that low levels of epiplakin, desmoplakin and periplakin correlated with centrosome mispositioning in cells that had progressed through EMT or tissue transformation. We further tested the causal role of these plakins in the regulation of centrosome position by knocking down their expression in a non-tumorigenic breast epithelial cell line (MCF10A). The downregulation of periplakin reduced the length of intercellular junction, which was not affected by the downregulation of epiplakin or desmoplakin. However, down-regulating any of them disrupted centrosome polarisation towards the junction without affecting microtubule stability. CONCLUSIONS: Altogether, these results demonstrated that epiplakin, desmoplakin and periplakin are involved in the maintenance of the peripheral position of the centrosome close to inter-cellular junctions. They also revealed that these plakins are downregulated during EMT and breast cancer progression, which are both associated with centrosome mispositioning. SIGNIFICANCE: These results revealed that the down-regulation of plakins and the consequential centrosome mispositioning are key signatures of disorganised cytoskeleton networks, inter-cellular junction weakening, shape deregulation and the loss of polarity in breast cancer cells. These metrics could further be used as a new readouts for early phases of tumoral development.


Assuntos
Polaridade Celular , Centrossomo , Células Epiteliais , Transição Epitelial-Mesenquimal , Plaquinas , Humanos , Centrossomo/metabolismo , Células Epiteliais/metabolismo , Plaquinas/metabolismo , Plaquinas/genética , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo
16.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38935075

RESUMO

Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Membrana Celular , Centrossomo , Proteínas de Drosophila , Drosophila melanogaster , Animais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/metabolismo , Membrana Celular/metabolismo , Centrossomo/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Dineínas/metabolismo , Exocitose , Microtúbulos/metabolismo
17.
Sci Adv ; 10(25): eadl6153, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896608

RESUMO

Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.


Assuntos
Plaquetas , Ciclo Celular , Centrossomo , Cinesinas , Megacariócitos , Centrossomo/metabolismo , Animais , Megacariócitos/metabolismo , Megacariócitos/citologia , Camundongos , Plaquetas/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Camundongos Knockout , Humanos , Mitose
18.
Biochim Biophys Acta Gen Subj ; 1868(8): 130648, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830559

RESUMO

KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Centrossomo , Proteínas do Citoesqueleto , Haploinsuficiência , Centrossomo/metabolismo , Humanos , Haploinsuficiência/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células/genética , Sistemas CRISPR-Cas , Edição de Genes , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Elife ; 132024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836552

RESUMO

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Assuntos
Camundongos Knockout , Proteínas Nucleares , Osteoclastos , Osteogênese , Animais , Camundongos , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo
20.
J R Soc Interface ; 21(215): 20230641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835244

RESUMO

Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.


Assuntos
Movimento Celular , Polaridade Celular , Centrossomo , Microtúbulos , Vimentina , Animais , Camundongos , Acetilação , Centrossomo/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Camundongos Knockout , Microtúbulos/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA