Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.966
Filtrar
1.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637578

RESUMO

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Assuntos
Micélio , Solo , Fungos , Carbono , Microbiologia do Solo , Ecossistema
2.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
3.
Pestic Biochem Physiol ; 199: 105795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458689

RESUMO

Fusarium head blight in wheat is caused by Fusarium graminearum, resulting in significant yield losses and grain contamination with deoxynivalenol (DON), which poses a potential threat to animal health. Cyclobutrifluram, a newly developed succinate dehydrogenase inhibitor, has shown excellent inhibition of Fusarium spp. However, the resistance risk of F. graminearum to cyclobutrifluram and the molecular mechanism of resistance have not been determined. In this study, we established the average EC50 of a range of F. graminearum isolates to cyclobutrifluram to be 0.0110 µg/mL. Six cyclobutrifluram-resistant mutants were obtained using fungicide adaptation. All mutants exhibited impaired fitness relative to their parental isolates. This was evident from measurements of mycelial growth, conidiation, conidial germination, virulence, and DON production. Interestingly, cyclobutrifluram did not seem to affect the DON production of either the sensitive isolates or the resistant mutants. Furthermore, a positive cross-resistance was observed between cyclobutrifluram and pydiflumetofen. These findings suggest that F. graminearum carries a moderate to high risk of developing resistance to cyclobutrifluram. Additionally, point mutations H248Y in FgSdhB and A73V in FgSdhC1 of F. graminearum were observed in the cyclobutrifluram-resistant mutants. Finally, an overexpression transformation assay and molecular docking indicated that FgSdhBH248Y or FgSdhC1A73V could confer resistance of F. graminearum to cyclobutrifluram.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Micélio , Doenças das Plantas
4.
J Biotechnol ; 386: 64-71, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38519035

RESUMO

With the world's population rapidly increasing, the demand for high-quality protein is on the rise. Edible fungi breeding technology stands as a crucial avenue to obtain strains with high yield, high-quality protein, and robust stress resistance. To address the protein supply gap, Atmospheric and Room Temperature Plasma (ARTP) mutagenesis, and spore hybridization techniques were employed to enhance Pleurotus djamor mycelium protein production. Beginning with the original strain Pleurotus djamor JD-1, ARTP was utilized to mutate spore suspension. The optimal treatment time for Pleurotus djamor spores, determined to achieve optimal mortality, was 240 s. Through primary and secondary screenings, 6 mutant strains out of 39 were selected, exhibiting improved protein yield and growth rates compared to the original strain. Among these mutagenic strains, 240S-4 showcased the highest performance, with a mycelial growth rate of 9.5±0.71 mm/d, a biomass of 21.45±0.54 g/L, a protein content of 28.75±0.92%, and a remarkable protein promotion rate of 128.03±7.29%. Additionally, employing spore hybridization and breeding, 7 single-nuclei strains were selected for pin-two hybridization, resulting in 21 hybrid strains. The biomass and protein content of 9 hybrid strains surpassed those of the original strains. One hybrid strain, H-5, exhibited remarkable mycelial protein production, boasting a mycelial growth rate of 26.5±0.7 mm/d, a biomass of 21.70±0.46 g/L, a protein content of 28.44±0.22%, and a protein promotion rate of 128.02±1.73%. Notably, both strains demonstrated about a 28% higher mycelial protein yield than the original strains, indicating comparable effectiveness between hybrid breeding and mutagenesis breeding. Finally, we analyzed the original and selected strains by molecular biological identification, which further proved the effectiveness of the breeding method. These findings present novel insights and serve as a reference for enhancing edible fungi breeding, offering promising avenues to meet the escalating protein demand.


Assuntos
Pleurotus , Mutagênese , Pleurotus/genética , Hibridização de Ácido Nucleico , Micélio/genética
5.
Langmuir ; 40(12): 6317-6329, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483835

RESUMO

Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Criança , Humanos , Chumbo , Reprodutibilidade dos Testes , Adsorção , Micélio , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124135, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508072

RESUMO

The diversity of fungal strains is influenced by genetic and environmental factors, growth conditions and mycelium age, and the spectral features of fungal mycelia are associated with their biochemical, physiological, and structural traits. This study investigates whether intraspecific differences can be detected in two closely related entomopathogenic species, namely Cordyceps farinosa and Cordyceps fumosorosea, using ultraviolet A to shortwave infrared (UVA-SWIR) reflectance spectra. Phylogenetic analysis of all strains revealed a high degree of uniformity among the populations of both species. The characteristics resulting from variation in the species, as well as those resulting from the age of the cultures were determined. We cultured fungi on PDA medium and measured the reflectance of mycelia in the 350-2500 nm range after 10 and 17 days. We subjected the measurements to quadratic discriminant analysis (QDA) to identify the minimum number of bands containing meaningful information. We found that when the age of the fungal culture was known, species represented by a group of different strains could be distinguished with no more than 3-4 wavelengths, compared to 7-8 wavelengths when the age of the culture was unknown. At least 6-8 bands were required to distinguish cultures of a known species among different age groups. Distinguishing all strains within a species was more demanding: at least 10 bands were required for C. fumosorosea and 21 bands for C. farinosa. In conclusion, fungal differentiation using point reflectance spectroscopy gives reliable results when intraspecific and age variations are taken into account.


Assuntos
Luz , Micélio , Análise Discriminante , Filogenia , Análise Espectral/métodos
7.
Food Funct ; 15(7): 3731-3743, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489162

RESUMO

Pleurotus tuber-regium (PTR) has been proved to have obvious pharmacological properties. In this study, a polysaccharide was extracted from the mycelium of PTR and administered to DSS-induced colitis mice to clarify the protective effect and mechanism of the PTR polysaccharide (PTRP) on colitis. The results showed that PTRP significantly improved the clinical symptoms and intestinal tissue damage caused by colitis and inhibited the secretion of pro-inflammatory cytokines and myeloperoxidase activity, while the levels of oxidative stress factors in mice decreased and the antioxidant capacity increased. The 16S rRNA sequencing of the mouse cecum content showed that PTRP changed the composition of gut microbiota, and the diversity and abundance of beneficial bacteria increased. In addition, PTRP also enhanced the production of short-chain fatty acids by regulating gut microbiota. In conclusion, our study shows that PTRP has the potential to relieve IBD symptoms and protect intestinal function by regulating inflammatory cytokines, oxidative stress and gut microbiota.


Assuntos
Colite , Microbioma Gastrointestinal , Pleurotus , Camundongos , Animais , Citocinas/metabolismo , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Estresse Oxidativo , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Micélio/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
8.
Bioresour Technol ; 399: 130577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479624

RESUMO

This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.


Assuntos
Pleurotus , Biomassa , Redes Neurais de Computação , Micélio , Fermentação , Meios de Cultura
9.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505899

RESUMO

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Assuntos
Agaricales , Agaricales/metabolismo , Suplementos Nutricionais , Fermentação , Fibras na Dieta , Micélio
10.
Nat Commun ; 15(1): 2099, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485948

RESUMO

Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.


Assuntos
Aspergillus oryzae , Biologia Sintética , Biologia Sintética/métodos , Edição de Genes , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Micélio/genética , Heme/metabolismo
11.
Int J Med Mushrooms ; 26(4): 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523448

RESUMO

Liquid fermentation could yield substantial mycelia mass and valuable secondary metabolites in large-scale production within a short, fermented duration. The liquid fermented process of mycelia of Poria cocos was optimized using a combination of single-factor experimentation and response surface methodology (RSM) to obtain more extract of P. cocos. The optimal conditions were determined as follows: The carbon source concentration at 1%, the nitrogen source concentration at 1%, the inoculum volume at 7% and a culture time of 9 d. Under these conditions, the ethyl acetate extract mass of P. cocos mycelia reached 0.0577 ± 0.0041 mg. There were significant interactions between nitrogen source concentration and cultivation time. The predicted values by the mathematical model based on the response surface analysis showed a close agreement with experimental data.


Assuntos
Wolfiporia , Fermentação , Wolfiporia/metabolismo , Micélio , Nitrogênio/metabolismo
12.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38429972

RESUMO

Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.


Assuntos
Antifúngicos , Aspergillus fumigatus , Animais , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Hifas/genética , Micélio , Anfotericina B
13.
J Microsc ; 294(2): 203-214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511469

RESUMO

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Assuntos
Minerais , Micélio , Microscopia Eletrônica de Varredura , Vácuo , Argila , Micélio/química , Minerais/análise , Materiais de Construção
14.
PLoS One ; 19(2): e0297816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319941

RESUMO

In their natural environment, fungi are subjected to a wide variety of environmental stresses which they must cope with by constantly adapting the architecture of their growing network. In this work, our objective was to finely characterize the thallus development of the filamentous fungus Podospora anserina subjected to different constraints that are simple to implement in vitro and that can be considered as relevant environmental stresses, such as a nutrient-poor environment or non-optimal temperatures. At the Petri dish scale, the observations showed that the fungal thallus is differentially affected (thallus diameter, mycelium aspect) according to the stresses but these observations remain qualitative. At the hyphal scale, we showed that the extraction of the usual quantities (i.e. apex, node, length) does not allow to distinguish the different thallus under stress, these quantities being globally affected by the application of a stress in comparison with a thallus having grown under optimal conditions. Thanks to an original geomatics-based approach based on the use of automatized Geographic Information System (GIS) tools, we were able to produce maps and metrics characterizing the growth dynamics of the networks and then to highlight some very different dynamics of network densification according to the applied stresses. The fungal thallus is then considered as a map and we are no longer interested in the quantity of material (hyphae) produced but in the empty spaces between the hyphae, the intra-thallus surfaces. This study contributes to a better understanding of how filamentous fungi adapt the growth and densification of their network to potentially adverse environmental changes.


Assuntos
Podospora , Fungos , Hifas , Micélio , Estresse Fisiológico , Proteínas Fúngicas
15.
Sci Total Environ ; 922: 171201, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417506

RESUMO

Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Adsorção , Pirenos , Micélio
16.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
17.
BMC Biotechnol ; 24(1): 9, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331794

RESUMO

BACKGROUND: The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content. RESULTS: Potato Dextrose Agar medium was suitable for all strains except P. ostreatus strain 2460. The best growth rate of P. ostreatus 2462 strain on solid culture media was 15.0 ± 0.8 mm/day, and mycelia best growth on liquid culture media-36.5 ± 0.2 g/l. P. ostreatus strains 551 and 1685 were more susceptible to positive effect of plant growth regulators Ivin, Methyur and Kamethur. Using of nutrient media based on combination of natural waste (amaranth flour cake and wheat germ, wheat bran, broken vermicelli and crumbs) has been increased the yield of P. ostreatus strains mycelium by 2.2-2.9 times compared to the control. All used P. ostreatus strains displayed strong antagonistic activity in co-cultivation with Aspergillus niger, Candida albicans, Issatchenkia orientalis, Fusarium poae, Microdochium nivale in dual-culture assay. P. ostreatus 2462 EtOAc mycelial extract good inhibited growth of Escherichia coli (17.0 ± 0.9 mm) while P. ostreatus 2460 suppressed Staphylococcus aureus growth (21.5 ± 0.5 mm) by agar well diffusion method. The highest radical scavenging effect displayed both mycelial extracts (EtOH and EtOAc) of P. ostreatus 1685 (61 and 56%) by DPPH assay as well as high phenolic content (7.17 and 6.73 mg GAE/g) by the Folin-Ciocalteu's method. The maximal total phenol content (7.52 mg GAE/g) demonstrated of P. ostreatus 2461 EtOH extract. CONCLUSIONS: It is found that the growth, antibacterial, antiradical scavenging activity as well as total phenolic content were dependent on studied P. ostreatus strains in contrast to antagonistic activity. The proposed culture mediums of natural waste could be an alternative to commercial mediums for the production mycelial biomass of P. ostreatus strains.


Assuntos
Pleurotus , Ágar/análise , Ágar/farmacologia , Antibacterianos/farmacologia , Meios de Cultura/química , Extratos Vegetais/farmacologia , Micélio
18.
Sci Total Environ ; 919: 170771, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336045

RESUMO

Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.


Assuntos
Botrytis , Pantoea , Solanum lycopersicum , Doenças das Plantas/prevenção & controle , Micélio , Perfilação da Expressão Gênica
19.
J Trace Elem Med Biol ; 83: 127381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38211406

RESUMO

BACKGROUND: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V5+) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi. METHODS: This manuscript gives a deeper insight into the interaction of V5+ with Coprinellus truncorum, an edible autochthonous species widely distributed in Europe and North America. Vanadium uptake and accumulation as V5+ was studied by 51V NMR, while the reducing abilities of the mycelium were determined by EPR. 31P NMR was used to determine its effects on the metabolism of phosphate compounds, with particular focus on phosphate sugars identified using HPLC. RESULTS: Vanadate enters the mycelium in monomeric form and shows no immediate detrimental effects on intracellular pH or polyphosphate (PPc) levels, even when applied at physiologically high concentrations (20 mM Na3VO4). Once absorbed, it is partially reduced to less toxic vanadyl (V4+) with notable unreduced portion, which leads to a large increase in phosphorylated sugar levels, especially glucose-1-phosphate (G1P) and fructose-6-phosphate (F6P). CONCLUSIONS: Preservation of pH and especially PPc reflects maintenance of the energy status of the mycelium, i.e., its tolerance to high V5+ concentrations. Rise in G1P and F6P levels implies that the main targets of V5+ are most likely phosphoglucomutase and phosphoglucokinase(s), enzymes involved in early stages of G6P transformation in glycolysis and glycogen metabolism. This study recommends C. truncorum for further investigation as a potential antidiabetic agent.


Assuntos
Agaricales , Vanadatos , Vanádio , Vanádio/análise , Vanadatos/química , Biomassa , Fosfatos/análise , Micélio/metabolismo
20.
Nutrients ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201981

RESUMO

Clostridium butyricum (CB) and Phellinus igniarius (PI) have anti-inflammatory, immune regulation, anti-tumor, and other functions. This study aimed to explore the therapeutic effect of CB and mycelium of PI (MPI) alone and in combination on colitis mice induced by dextran sodium sulfate (DSS). Mice were randomly assigned to five groups: (1) control (CTRL), (2) DSS, (3) CB, (4) MPI, and (5) CB + MPI (CON). The weight of the mice was recorded daily during the experiment, and the length of the colon was measured on the last day of the experiment. The colons were collected for hematoxylin and eosin staining, colon contents were collected for intestinal flora analysis, and serum was collected for metabolite analysis. The results showed that compared with the DSS group, CB, MPI, and CON treatments inhibited the weight loss and colon length shortening caused by DSS, significantly increased the concentrations of interleukin (IL)-4, IL-10, and superoxide dismutase, and significantly decreased the concentrations of IL-6, tumor necrosis factor-α, and myeloperoxidase. Gene sequence analysis of 16S rRNA showed that CB, MPI, and CON treatments changed the composition and structure of intestinal microorganisms. Metabolome results showed that CB, MPI, and CON treatments changed serum metabolites in DSS-treated mice, including dodecenoylcarnitine, L-urobilinogen, and citric acid. In conclusion, CB, MPI, and CON treatments alleviated DSS-induced colitis in mice by regulating intestinal flora and metabolites, with the CON group having the best effect.


Assuntos
Clostridium butyricum , Colite , Microbioma Gastrointestinal , Phellinus , Animais , Camundongos , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Micélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...