Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.915
Filtrar
1.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557720

RESUMO

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Assuntos
Compostos de Amônio , Microbiota , Águas Residuárias , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Bactérias , Biofilmes , Nitrogênio , Esgotos , Desnitrificação
2.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
3.
Environ Microbiol ; 26(4): e16625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653479

RESUMO

Diatoms can survive long periods in dark, anoxic sediments by forming resting spores or resting cells. These have been considered dormant until recently when resting cells of Skeletonema marinoi were shown to assimilate nitrate and ammonium from the ambient environment in dark, anoxic conditions. Here, we show that resting cells of S. marinoi can also perform dissimilatory nitrate reduction to ammonium (DNRA), in dark, anoxic conditions. Transmission electron microscope analyses showed that chloroplasts were compacted, and few large mitochondria had visible cristae within resting cells. Using secondary ion mass spectrometry and isotope ratio mass spectrometry combined with stable isotopic tracers, we measured assimilatory and dissimilatory processes carried out by resting cells of S. marinoi under dark, anoxic conditions. Nitrate was both respired by DNRA and assimilated into biomass by resting cells. Cells assimilated nitrogen from urea and carbon from acetate, both of which are sources of dissolved organic matter produced in sediments. Carbon and nitrogen assimilation rates corresponded to turnover rates of cellular carbon and nitrogen content ranging between 469 and 10,000 years. Hence, diatom resting cells can sustain their cells in dark, anoxic sediments by slowly assimilating and respiring substrates from the ambient environment.


Assuntos
Compostos de Amônio , Diatomáceas , Nitratos , Oxirredução , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Diatomáceas/metabolismo , Anaerobiose , Escuridão , Compostos Orgânicos/metabolismo , Espectrometria de Massa de Íon Secundário , Sedimentos Geológicos/microbiologia , Carbono/metabolismo , Nitrogênio/metabolismo
4.
Sci Total Environ ; 927: 172179, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582103

RESUMO

While over-fertilization and nitrogen deposition can lead to the enrichment of nitrogen in soil, its effects on heavy metal fractions under gradient moisture conditions remains unclear. Here, the effect of intensive ammonium (NH4+) addition on the conversion and interaction of cadmium (Cd), iron (Fe) and carbon (C) was studied. At relatively low (30-80 %) water hold capacity (WHC) NH4+ application increased the carbonate bound Cd fraction (F2Cd), while at relatively high (80-100 %) WHC NH4+ application increased the organic matter bound Cd fraction (F4Cd). Iron­manganese oxide bound Cd fractions (F3Cd) and oxalate-Fe decreased, but DCB-Fe increased in NH4+ treatments, indicating that amorphous Fe was the main carrier of F3Cd. The variations in F1Cd and F4Cd observed under the 100-30-100 % WHC treatment were similar to those observed under low moisture conditions (30-60 % WHC). The C=O/C-H ratio of organic matter in soil decreased under the 30-60 % WHC treatment, but increased under the 80-100 % WHC treatment, which was the dominant factor influencing F4Cd changes. The conversion of NH4+ declined with increasing soil moisture content, and the impact on oxalate-Fe was greater at 30-60 % WHC than at 80-100 % WHC. Correspondingly, genetic analysis showed the effect of NH4+ on Fe and C metabolism at 30-60 % WHC was greater than at 80-100 % WHC. Specifically, NH4+ treatment enhanced the expression of genes encoding extracellular Fe complexation (siderophore) at 30-80 % WHC, while inhibiting genes encoding Fe transmembrane transport at 30-60 % WHC, indicating that siderophores simultaneously facilitated Cd detoxification and Fe complexation. Furthermore, biosynthesis of sesquiterpenoid, steroid, butirosin and neomycin was significantly correlated with F4Cd, while glycosaminoglycan degradation metabolism and assimilatory nitrate reduction was significantly correlated with F2Cd. Overall, this study gives a more comprehensive insight into the effect of NH4+ on activated Fe and C conversion on soil Cd redistribution under gradient moisture conditions.


Assuntos
Compostos de Amônio , Cádmio , Carbono , Fertilizantes , Ferro , Oxirredução , Poluentes do Solo , Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Agricultura/métodos , Oryza/metabolismo
5.
J Environ Sci (China) ; 143: 176-188, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644015

RESUMO

One-stage partial nitrification coupled with anammox (PN/A) technology effectively reduces the energy consumption of a biological nitrogen removal system. Inhibiting nitrite-oxidizing bacteria (NOB) is essential for this technology to maintain efficient nitrogen removal performance. Initial ammonium concentration (IAC) affects the degree of inhibited NOB. In this study, the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor. The results showed that nitrogen removal efficiency decreased from 82.49% ± 1.90% to 64.57% ± 3.96% after the IAC was reduced from 60 to 20 mg N/L, while the nitrate production ratio increased from 13.87% ± 0.90% to 26.50% ± 3.76%. NOB activity increased to 1,133.86 mg N/m2/day after the IAC decreased, approximately 4-fold, indicating that the IAC plays an important inhibitory role in NOB. The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC. The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure. Ca. Brocadia and Ca. Jettenia were the main anammox bacteria, and Nitrosomonas and Nitrospira were the main AOB and NOB, respectively. IAC did not affect the difference in growth between Ca. Brocadia and Ca. Jettenia. Thus, modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.


Assuntos
Compostos de Amônio , Biofilmes , Reatores Biológicos , Nitrificação , Nitrogênio , Compostos de Amônio/metabolismo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Microbiota
6.
Environ Geochem Health ; 46(5): 174, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592609

RESUMO

The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.


Assuntos
Compostos de Amônio , Insuficiência Renal Crônica , Humanos , Adulto , Nitratos , China/epidemiologia , Material Particulado/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Solo , Sulfatos , Óxidos de Enxofre
7.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611705

RESUMO

Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.


Assuntos
Compostos de Amônio , Compostos de Amônio/farmacologia , Amônia , Ácidos Cetoglutáricos/farmacologia , Carbono , Nitrogênio , Trifosfato de Adenosina
8.
Environ Microbiol ; 26(4): e16610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576217

RESUMO

Coral reef ecosystems are now commonly affected by major climate and disease disturbances. Disturbance impacts are typically recorded using reef benthic cover, but this may be less reflective of other ecosystem processes. To explore the potential for reef water-based disturbance indicators, we conducted a 7-year time series on US Virgin Island reefs where we examined benthic cover and reef water nutrients and microorganisms from 2016 to 2022, which included two major disturbances: hurricanes Irma and Maria in 2017 and the stony coral tissue loss disease outbreak starting in 2020. The disease outbreak coincided with the largest changes in the benthic habitat, with increases in the percent cover of turf algae and Ramicrusta, an invasive alga. While sampling timepoint contributed most to changes in reef water nutrient composition and microbial community beta diversity, both disturbances led to increases in ammonium concentration, a mechanism likely contributing to observed microbial community shifts. We identified 10 microbial taxa that were sensitive and predictive of increasing ammonium concentration. This included the decline of the oligotrophic and photoautotrophic Prochlorococcus and the enrichment of heterotrophic taxa. As disturbances impact reefs, the changing nutrient and microbial regimes may foster a type of microbialization, a process that hastens reef degradation.


Assuntos
Compostos de Amônio , Antozoários , Tempestades Ciclônicas , Animais , Ecossistema , Ilhas Virgens Americanas , Recifes de Corais , Água
9.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
10.
World J Microbiol Biotechnol ; 40(5): 136, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499730

RESUMO

Photosynthetic diazotrophs expressing iron-only (Fe-only) nitrogenase can be developed into a promising biofertilizer, as it is independent on the molybdenum availability in the soil. However, the expression of Fe-only nitrogenase in diazotrophs is repressed by the fixed nitrogen of the soil, limiting the efficiency of nitrogen fixation in farmland with low ammonium concentrations that are inadequate for sustainable crop growth. Here, we succeeded in constitutively expressing the Fe-only nitrogenase even in the presence of ammonium by controlling the transcription of Fe-only nitrogenase gene cluster (anfHDGK) with the transcriptional activator of Mo nitrogenase (NifA*) in several different ways, indicating that the engineered NifA* strains can be used as promising chassis cells for efficient expression of different types of nitrogenases. When applied as a biofertilizer, the engineered Rhodopseudomonas palustris effectively stimulated rice growth, contributing to the reduced use of chemical fertilizer and the development of sustainable agriculture.


Assuntos
Compostos de Amônio , Oryza , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Nitrogênio/metabolismo , Solo
11.
Planta ; 259(5): 94, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509428

RESUMO

MAIN CONCLUSION: This study determined the effect of ammonium supply on the cell division process and showed that ammonium-dependent elevated reactive oxygen species production could mediate the downregulation of the cell cycle-related gene expression. Plants grown under high-ammonium conditions show stunted growth and other toxicity symptoms, including oxidative stress. However, how ammonium regulates the development of plants remains unknown. Growth is defined as an increase in cell volume or proliferation. In the present study, ammonium-related changes in cell cycle activity were analyzed in seedlings, apical buds, and young leaves of Arabidopsis thaliana plants. In all experimental ammonium treatments, the genes responsible for regulating cell cycle progression, such as cyclin-dependent kinases and cyclins, were downregulated in the studied tissues. Thus, ammonium nutrition could be considered to reduce cell proliferation; however, the cause of this phenomenon may be secondary. Reactive oxygen species (ROS), which are produced in large amounts in response to ammonium nutrition, can act as intermediates in this process. Indeed, high ROS levels resulting from H2O2 treatment or reduced ROS production in rbohc mutants, similar to ammonium-triggered ROS, correlated with altered cell cycle-related gene expression. It can be concluded that the characteristic ammonium growth suppression may be executed by enhanced ROS metabolism to inhibit cell cycle activity. This study provides a base for future research in determining the mechanism behind ammonium-induced dwarfism in plants, and strategies to mitigate such stress.


Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Compostos de Amônio/farmacologia , Compostos de Amônio/metabolismo , Peróxido de Hidrogênio/metabolismo , Divisão Celular , Ciclo Celular
12.
Int J Biol Macromol ; 265(Pt 2): 130795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492696

RESUMO

The utilization of biomass-based conductive polymer hydrogels in wearable electronics holds great promise for advancing performance and sustainability. An interpenetrating network of polyacrylamide/2-hydroxypropyltrimethyl ammonium chloride chitosan (PAM/HACC) was firstly obtained through thermal-initiation polymerization of AM monomers in the presence of HACC. The positively charged groups on HACC provide strong electrostatic interactions and hydrogen bonding with the PAM polymer chains, leading to improved mechanical strength and stability of the hydrogel network. Subsequently, the PAM/HACC networks served as the skeletons for the in-situ polymerization of polypyrrole (PPy), and then the resulting conductive hydrogel demonstrated stable electromagnetic shielding performance (40 dB), high sensitivity for strain sensing (gauge factor = 2.56). Moreover, the incorporation of quaternary ammonium chitosan into PAM hydrogels enhances their antimicrobial activity, making them more suitable for applications in bacterial contamination or low-temperature environments. This conductive hydrogel, with its versatility and excellent mechanical properties, shows great potential in applications such as electronic skin and flexible/wearable electronics.


Assuntos
Resinas Acrílicas , Compostos de Amônio , Quitosana/análogos & derivados , Compostos de Amônio Quaternário , Polímeros , Pirróis , Antibacterianos/farmacologia , Condutividade Elétrica , Hidrogéis
13.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532351

RESUMO

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Assuntos
Compostos de Amônio , Anemia Hipocrômica , Deficiências de Ferro , Vitis , Nitrogênio/metabolismo , Nitratos/metabolismo , Anemia Hipocrômica/metabolismo , Vitis/genética , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo
14.
J Environ Manage ; 356: 120750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520849

RESUMO

The nitrate denitrifying anaerobic methane oxidation-anaerobic ammonia oxidation (DAMO-anammox) can accomplish nitrogen removal and methane (CH4) reduction. This process greatly contributes to carbon emission mitigation and carbon neutrality. In this study, we investigated the electron transfer process of functional microorganisms in the iron-mediated DAMO-anammox system. Fe3+ could be bound to several functional groups (-CH3, COO-, -CH) in extracellular polymeric substance (EPS), and the functional groups bound were different at different iron concentration. Fe3+ underwent reduction reactions to produce Fe2+. Most Fe3+ and Fe2+ react with microorganisms and formed chelates with EPS. Three-dimensional fluorescence spectra showed that Fe3+ affected the secretion of tyrosine and tryptophan, which were essential for cytochrome synthesis. The presence of Fe3+ accelerated c-type cytochrome-mediated extracellular electron transfer (EET), and when more Fe3+ existed, the more cytochrome C expressed. DAMO archaea (M. nitroreducens) in the system exhibited a high positive correlation with the functional genes (resa and ccda) for cytochrome c synthesis. Some denitrifying microorganisms showed positive correlations with the abundance of riboflavin. This finding showed that riboflavin secreted by functional microorganisms acted as an electron shuttle. In addition, DAMO archaea were positively correlated with the hair synthesis gene pily1, which indicated that direct interspecies electron transfer (DIET) may exist in the iron-mediated DAMO-anammox system.


Assuntos
Compostos de Amônio , Ferro , Oxidação Anaeróbia da Amônia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Citocromos c/metabolismo , Elétrons , Desnitrificação , Anaerobiose , Archaea , Oxirredução , Metano , Carbono/metabolismo , Riboflavina/metabolismo , Reatores Biológicos , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Nitritos/metabolismo
15.
Water Res ; 254: 121372, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430761

RESUMO

Watershed water quality modeling is a valuable tool for managing ammonium (NH4+) pollution. However, simulating NH4+ pollution presents unique challenges due to the inherent instability of NH4+ in natural environment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non-point source (NPS) NH4+ processes, specifically incorporating the simulation of land-to-water NH4+ delivery. The Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can effectively simulate the NPS NH4+ processes. It is recommended to use multiple sets of observations to calibrate NH4+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source inputs significantly contribute to NH4+ load at watershed outlet (32.4∼51.9 %), while NPS inputs contribute 15.3∼17.3 % of NH4+ loads. NH4+ primarily enters water through surface runoff and lateral flow, with negligible leaching. Average NH4+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly occur at agricultural areas. Notably, proposed NH4+ mitigation measures, including urban sewage treatment enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate potential to collectively reduce the NH4+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable implications for NH4+ modeling and management in regions with similar climates and significant anthropogenic nitrogen inputs.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Fertilizantes , Esgotos , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Nitrogênio/análise , Qualidade da Água , China , Rios , Poluentes Químicos da Água/análise , Fósforo/análise
16.
Water Res ; 254: 121424, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460226

RESUMO

Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.


Assuntos
Compostos de Amônio , Desnitrificação , Temperatura , Oxidação Anaeróbia da Amônia , Águas Residuárias , Esgotos , Reatores Biológicos , Oxirredução , Nitrogênio/metabolismo
17.
Environ Monit Assess ; 196(4): 362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472525

RESUMO

The effects of addition of adsorbent mixture at two different stages in aquaculture system were investigated for the first time in this study. In the first stage, in order to determine the effects of natural adsorbents in an environment without feed, a trial consisting of four treatment groups with three replications was conducted. In this trial, individual and combined effects of two natural adsorbents on water parameters in absence of feed were assessed for five days. In the second stage for 9 experimental days, a total of 18 aquaria consisting of three treatment groups with three replications for two different fish feeds were used. Of these aquaria, the first six received only two types of feeds containing 33 and 40% protein, designated as two control groups (C1 and C2). Other two groups (T1 and T2) were prepared by adding a leonardite: zeolite mixture (at 2:1 ratio) to next six replicates simultaneously. The last six replicates received a leonardite: zeolite mixture (at 2:1 ratio) after the 8th day of the study, and formed the last two treatment groups (T3 and T4). In this study, mean pH values varied between 7.01 and 7.82 and ammonia values were found to be maximum of 94.96% and minimum of 38.73% lower compared to the control group when 3 g adsorbent mixture (2L: 1Z) was used to balance pH and ammonium (NH4+) values in an aquatic environment containing 0.5 l freshwater and 0.5 g fish feed with 33-40% protein contents. It was demonstrated that the combined use of zeolite and leonardite had positive effects on ammonium removal and providing optimum pH levels for aquaculture. The combined use of these two adsorbents helped balance the pH-reducing effect of leonardite with zeolite, and the pH-reducing effect of leonardite contributed to the NH4+ adsorption efficiency of zeolite.


Assuntos
Compostos de Amônio , Minerais , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Animais , Zeolitas/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Adsorção , Aquicultura
18.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542440

RESUMO

Electrospray ionization mass spectrometry (ESI-MS) analysis is frequently associated with noncovalent adduct formation, both in positive and negative modes. Anion binding and sensing by mass spectrometry, notably more challenging compared to cation binding, will have major research potential with the development of appropriate sensors. Here, we demonstrated identification of stable bisquaternary dication adducts with trifluoroacetate (TFA-), Cl- and HSO4- in positive-mode ESI-MS analysis. The observed adducts were stable in MS/MS mode, leading to the formation of characteristic fragment ions containing a covalently bound anion, which requires bond reorganization. This phenomenon was confirmed by computational methods. Furthermore, given that anion detection and anion sensor chemistry have gained significant prominence in chemistry, we conducted an analysis of the fluorescent properties of bisquaternary ammonium compound as a potential anion sensor.


Assuntos
Compostos de Amônio , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem , Íons , Ânions
19.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509821

RESUMO

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Assuntos
Compostos de Amônio , Incrustação Biológica , Suínos , Animais , Amônia/análise , Águas Residuárias , Incrustação Biológica/prevenção & controle , Reciclagem
20.
Environ Sci Technol ; 58(13): 6049-6057, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525996

RESUMO

High Cl- concentration in saline wastewater (e.g., landfill leachate) limits wastewater purification. Catalytic Cl- conversion into reactive chlorine species (RCS) arises as a sustainable strategy, making the salinity profitable for efficient wastewater treatment. Herein, aiming to reveal the structure-property relationship in Cl- utilization, bismuth oxychloride (BiOCl) photocatalysts with coexposed {001} and {110} facets are synthesized. With an increasing {001} ratio, the RCS production efficiency increases from 75.64 to 96.89 µg L-1 min-1. Mechanism investigation demonstrates the fast release of lattice Cl- as an RCS and the compensation of ambient Cl-. Correlation analysis between the internal electric field (IEF, parallel to [001]) and normalized efficiency on {110} (kRCS/S{110}, perpendicular to [001]) displays a coefficient of 0.86, validating that the promoted carrier dynamics eventually affects Cl- conversion on the open layered structure. The BiOCl photocatalyst is well behaved in ammonium (NH4+-N) degradation ranging from 20 to 800 mg N L-1 with different chlorinity (3-12 g L-1 NaCl). The sustainable Cl- conversion into RCS also realizes 85.4% of NH4+-N removal in the treatment of realistic landfill leachate (662 mg of N L-1 NH4+-N). The structure-property relationship provides insights into the design of efficient catalysts for environment remediation using ambient Cl-.


Assuntos
Compostos de Amônio , Bismuto , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/química , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...