Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.693
Filtrar
1.
J Environ Manage ; 357: 120730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574705

RESUMO

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Medição de Risco , Indústria Manufatureira , Alcenos , China
2.
Zhonghua Yi Xue Za Zhi ; 104(13): 1057-1063, 2024 Apr 02.
Artigo em Chinês | MEDLINE | ID: mdl-38561301

RESUMO

Objective: To investigate the effect of deep neuromuscular blockade (DNMB) combined with low pneumoperitoneum pressure anesthesia strategy on postoperative pain in patients undergoing laparoscopic colorectal surgery. Methods: This study was a randomized controlled trial. One hundred and twenty patients who underwent laparoscopic colorectal surgery at Cancer Hospital of Chinese Academy of Medical Sciences from December 1, 2022 to May 31, 2023 were selected and randomly divided into two groups by random number table method. Moderate neuromuscular blockade [train of four stimulations count (TOFC)=1-2] was maintained in patients of the control group (group C, n=60) and pneumoperitoneum pressure level was set at 15 mmHg(1 mmHg=0.133 kPa). DNMB [post-tonic stimulation count (PTC)=1-2] was maintained in patients of the DNMB combined with low pneumoperitoneum pressuregroup (group D, n=60) and pneumoperitoneum pressure level was set at 10 mmHg. The primary measurement was incidence of moderate to severe pain at 1 h after surgery. The secondary measurements the included incidence of moderate to severe pain at 1, 2, 3, 5 d and 3 months after surgery, the incidence of rescue analgesic drug use, the doses of sufentanil in analgesic pumps, surgical rating scale (SRS) score, the incidence of postoperative residual neuromuscular block, postoperative recovery [evaluated with length of post anesthesia care unit (PACU) stay, time of first exhaust and defecation after surgery and length of hospital stay] and postoperative inflammation conditions [evaluated with serum concentration of interleukin (IL)-1ß and IL-6 at 1 d and 3 d after surgery]. Results: The incidence of moderate to severe pain in group D 1 h after surgery was 13.3% (8/60), lower than 30.0% (18/60) of group C (P<0.05). The incidence of rescue analgesia in group D at 1 h and 1 d after surgery were 13.3% (8/60) and 4.2% (5/120), respectively, lower than 30.0% (18/60) and 12.5% (15/120) of group C (both P<0.05). The IL-1ß level in group D was (4.1±1.8)ng/L at 1 d after surgery, which was lower than (4.9±2.6) ng/L of group C (P=0.048). The IL-6 level in group D was (2.0±0.7)ng/L at 3 d after surgery, which was lower than (2.4±1.1) ng/L of group C (P=0.018). There was no significant difference in the doses of sufentanil in analgesic pumps, intraoperative SRS score, incidence of neuromuscular block residue, time spent in PACU, time of first exhaust and defecation after surgery, incidence of nausea and vomiting, and length of hospitalization between the two groups (all P>0.05). Conclusion: DNMB combined with low pneumoperitoneum pressure anesthesia strategy alleviates the early-stage pain in patients after laparoscopic colorectal surgery.


Assuntos
Alcenos , Cirurgia Colorretal , Laparoscopia , Bloqueio Neuromuscular , Nitrocompostos , Pneumoperitônio , Humanos , Bloqueio Neuromuscular/métodos , Sufentanil , Cirurgia Colorretal/métodos , Interleucina-6 , Laparoscopia/métodos , Dor Pós-Operatória , Analgésicos
3.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611844

RESUMO

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Assuntos
Mercúrio , Metais Pesados , Ligantes , Sais , Metais Pesados/toxicidade , Mercúrio/toxicidade , Íons , Antibacterianos/farmacologia , Alcenos , Polímeros , Piridinas
4.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542838

RESUMO

As one of the traditional Chinese herbs, Danshen (Salvia miltiorrhiza Bunge) has been widely studied and widely used in the treatment of cardiovascular, cerebrovascular, and other immune diseases. Tanshinones and salvianolic acids isolated from Danshen are considered to be the main components of its biological activity and pharmacology that play important roles in increasing the index of immune organs, regulating the number and function of immune cells, and releasing immunoreactive substances. Especially tanshinone IIA, cryptotanshinone, salvianolic acid B, and rosmarinic acid show good biological activity in treating rheumatoid arthritis, some immune-mediated inflammatory diseases, psoriasis, and inflammatory bowel disease. In order to understand their pharmacological effects and provide references for future research and clinical treatment, the regulation of immune response by tanshinones and salvianolic acids is summarized in detail in this paper. In addition, the challenges in their pharmacological development and the opportunities to exploit their clinical potential have been documented.


Assuntos
Alcenos , Antineoplásicos , Polifenóis , Salvia miltiorrhiza , Abietanos/farmacologia , Imunidade
5.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498932

RESUMO

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Membranas/metabolismo , Fosfolipídeos/metabolismo , Alcenos/metabolismo
6.
J Mol Graph Model ; 129: 108756, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38479236

RESUMO

Formaldehyde is a VOC gas that plays a key role in air pollution. To limit emissions into the environment, the utilization of this waste as a raw material is a promising way. In this work, the M06-L functional calculation was used to investigate the structure, electronic properties, and catalytic activity of group IIA metals (Be, Mg, and Ca) partial substitution on Cu-BTC paddlewheels for formaldehyde encapsulation and carbonyl-ene reaction with propylene. Formaldehyde is absorbed by the metal center of the paddlewheel via its oxygen atom. The adsorption of formaldehyde on the substituted metal sites increased as compared to the parent Cu-BTC which can facilitate formaldehyde to react with propylene. The adsorption free energies are predicted to be -15.1 (Be-Cu-BTC), -14.7 (Mg-Cu-BTC), and -14.5 (Ca-Cu-BTC) kcal mol-1, respectively. The substituted metal has a slight effect on the Lewis acidity of the Cu ion in the paddlewheel. The adsorption free energy of formaldehyde, similar to that found in the pristine Cu-BTC, is observed. For the carbonyl-ene reaction, the reaction is proposed via a single step involving the C-C bond formation between two reactants and one hydrogen of propylene methyl group moves to formaldehyde oxygen, simultaneously. It was found that the substituted metals do not affect the catalytic performance of the Cu center for this reaction. The activation energies for the reaction at the Cu center are in the range of 22.0-23.4 kcal mol-1, which are slightly different from Cu-BTC (21.5 kcal mol-1). Interestingly, the catalytic activity of this reaction on the substituted metal is greater than that on the Cu center. The catalytic activities are in the order Be-Cu-BTC (13.3 kcal mol-1) > Mg-Cu-BTC (15.9 kcal mol-1) > Ca-Cu-BTC (17.8 kcal mol-1). Among them, the Be site of the bimetallic Be-Cu-BTC paddlewheel is predicted as a promising candidate catalyst.


Assuntos
Formaldeído , Metais , Formaldeído/química , Alcenos/química , Oxigênio
7.
Int J Biol Macromol ; 265(Pt 1): 130834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484815

RESUMO

Blending poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) is a cost-effective strategy to obtain biodegradable plastic with complementary properties. However, the incompatibility between PBAT and PLA is a great challenge for fabricating high-performance composite films. Herein, the ethyl acetate fractionated lignin with the small glass transition temperature and low molecular weight was achieved and incorporated into the PBAT/PLA composite as a compatibilizer. The fractionated lignin can be uniformly dispersed within the PBAT/PLA matrix through a melt blending process and interact with the molecular chain of PBAT and PLA as a bonding bridge, which enhances the intermolecular interactions and reduces the interfacial tension of PBAT/PLA. By adding fractionated lignin, the tensile strength of the PBAT/PLA composite increased by 35.4 % and the yield strength increased by 37.7 %. Owing to lignin, the composite films possessed the ultraviolet shielding function and exhibited better water vapor barrier properties (1.73 ± 0.08 × 10-13 g·cm/cm2·s·Pa). This work conclusively demonstrated that fractionated lignin can be used as a green compatibilizer and a low-cost functional filler for PBAT/PLA materials, and provides guidance for the application of lignin in biodegradable plastics.


Assuntos
Alcenos , Plásticos Biodegradáveis , Lignina , Ácidos Ftálicos , Adipatos , Poli A , Poliésteres
8.
Mol Metab ; 82: 101908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432400

RESUMO

OBJECTIVE: Menopause adversely impacts systemic energy metabolism and increases the risk of metabolic disease(s) including hepatic steatosis, but the mechanisms are largely unknown. Dosing female mice with vinyl cyclohexene dioxide (VCD) selectively causes follicular atresia in ovaries, leading to a murine menopause-like phenotype. METHODS: In this study, we treated female C57BL6/J mice with VCD (160 mg/kg i.p. for 20 consecutive days followed by verification of the lack of estrous cycling) to investigate changes in body composition, energy expenditure (EE), hepatic mitochondrial function, and hepatic steatosis across different dietary conditions. RESULTS: VCD treatment induced ovarian follicular loss and increased follicle-stimulating hormone (FSH) levels in female mice, mimicking a menopause-like phenotype. VCD treatment did not affect body composition, or EE in mice on a low-fat diet (LFD) or in response to a short-term (1-week) high-fat, high sucrose diet (HFHS). However, the transition to a HFHS lowered cage activity in VCD mice. A chronic HFHS diet (16 weeks) significantly increased weight gain, fat mass, and hepatic steatosis in VCD-treated mice compared to HFHS-fed controls. In the liver, VCD mice showed suppressed hepatic mitochondrial respiration on LFD, while chronic HFHS resulted in compensatory increases in hepatic mitochondrial respiration. Also, liver RNA sequencing revealed that VCD promoted global upregulation of hepatic lipid/cholesterol synthesis pathways. CONCLUSION: Our findings suggest that the VCD-induced menopause model compromises hepatic mitochondrial function and lipid/cholesterol homeostasis that sets the stage for HFHS diet-induced steatosis while also increasing susceptibility to obesity.


Assuntos
Alcenos , Fígado Gorduroso , Atresia Folicular , Feminino , Camundongos , Animais , Menopausa , Ovário/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Modelos Animais de Doenças , Colesterol/metabolismo , Aumento de Peso
9.
J Chromatogr A ; 1721: 464815, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38522406

RESUMO

Microbial cell factories are an attractive alternative to produce high-value natural products using sustainable processes. However, product recovery is one of the main challenges to reduce production cost and make these technologies economically interesting. In this work, new resins were formulated to 3D print hydrophobic adsorbents for the recovery of biologics from microbial cultivations. Benzyl methacrylate (BEMA) and butyl methacrylate (BUMA) were selected as functional monomers suitable for the adsorption of hydrophobic compounds. Pore morphology was tailored through the inclusion of pore forming agents (porogens) in the resin. Different porogens and porogen concentrations were evaluated resulting in materials with different porous networks. Sudan 1 and the anticancer drug paclitaxel were employed as model compounds to test the adsorption performance of hydrophobic and terpene molecules onto the developed 3D printed materials. The material with greatest adsorption capacity was obtained using BEMA monomer with 40 % (v/v) porogen (BEMA40). The performance of BEMA40 to recover taxadiene from small-scale (5 mL) Saccharomyces cerevisiae cultivations was tested and compared with commercial Diaion HP-20 beads. Taxadiene titres on BEMA40 (46 ± 2 mg/L) and Diaion HP-20 (54 ± 4 mg/L) were comparable, with no taxadiene detected in the cells and cell-free media, suggesting near 100 % taxadiene partition on the adsorbents. Compared to commercial beads, 3D printed adsorbents can be customized with adjustments in the resin formulation, are well adaptable to diverse bioreactor types, do not clog sampling ports and columns and are easier to handle during post processing. The results of this work demonstrate the potential of 3D printing to fabricate hydrophobic interaction adsorbent materials and their application in the recovery of biological products.


Assuntos
Alcenos , Diterpenos , Metacrilatos , Diterpenos/química , Paclitaxel , Terpenos , Saccharomyces cerevisiae/metabolismo , Impressão Tridimensional
10.
J Am Chem Soc ; 146(11): 7191-7197, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442365

RESUMO

Photoenzymatic intermolecular hydroalkylations of olefins are highly enantioselective for chiral centers formed during radical termination but poorly selective for centers set in the C-C bond-forming event. Here, we report the evolution of a flavin-dependent "ene"-reductase to catalyze the coupling of α,α-dichloroamides with alkenes to afford α-chloroamides in good yield with excellent chemo- and stereoselectivity. These products can serve as linchpins in the synthesis of pharmaceutically valuable motifs. Mechanistic studies indicate that radical formation occurs by exciting a charge-transfer complex templated by the protein. Precise control over the orientation of molecules within the charge-transfer complex potentially accounts for the observed stereoselectivity. The work expands the types of motifs that can be prepared using photoenzymatic catalysis.


Assuntos
Alcenos , Catálise
11.
Mar Drugs ; 22(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535449

RESUMO

The anti-inflammatory effect of the ethanol extract of Sargassum yezoense and its fractions were investigated in this study. The ethanol extract exhibited a strong anti-inflammatory effect on lipopolysaccharide-stimulated RAW 264.7 macrophages and effectively suppressed the M1 polarization of murine bone-marrow-derived macrophages stimulated by lipopolysaccharides and IFN-γ (interferon-gamma). Through a liquid-liquid extraction process, five fractions (n-hexane, chloroform, ethyl acetate, butanol, and aqueous) were acquired. Among these fractions, the chloroform fraction (SYCF) was found to contain the highest concentration of phenolic compounds, along with two primary meroterpenoids, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), and exhibit significant antioxidant capacity. It also demonstrated a robust anti-inflammatory effect. A direct comparison was conducted to assess the relative contribution of SHQA and SCM to the anti-inflammatory properties of SYCF. The concentrations of SHQA and SCM tested were determined based on their relative abundance in SYCF. SHQA contributed to a significant portion of the anti-inflammatory property of SYCF, while SCM played a limited role. These findings not only highlight the potential of the chloroform-ethanol fractionation approach for concentrating meroterpenoids in S. yezoense but also demonstrate that SHQA and other bioactive compounds work additively or synergistically to produce the potent anti-inflammatory effect of SYCF.


Assuntos
Alcenos , Benzopiranos , Benzoquinonas , Sargassum , Animais , Camundongos , Clorofórmio , Etanol , Lipopolissacarídeos
12.
Chemosphere ; 353: 141554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430940

RESUMO

Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp. S2-1, and Humicola sp. strain S2-3 were capable of degrading a commercial bio-plastic film with degradation rates of 9.5, 8.6, and 12.2%, respectively after 3 months incubation at ambient conditions. Scanning electron microscopy (SEM) analyses showed that bio-plastic film was extensively fragmented with severe cracking on the surface structure after incubation with isolated fungal strains. X-ray diffraction (XRD) analysis also revealed that high crystallinity of the commercial bio-plastic film was significantly decreased after degradation by fungal strains. Liquid chromatography-mass spectrometry (LC-MS) analyses of the fungal culture supernatants containing the bio-plastic film showed the peaks for adipic acid, terephthalic acid (TPA), and terephthalate-butylene (TB) as major metabolites, suggesting cleavage of ester bonds and accumulation of TPA. Furthermore, a consortium of fungal strain K2 with TPA degrading bacterium Pigmentiphaga sp. strain P3-2 isolated from the same sampling site exhibited faster degradation rate of the bio-plastic film within 1 month of incubation with achieving complete biodegradation of accumulated TPA. We assume that the extracellular lipase activity presented in the fungal cultures could hydrolyze the ester bonds of PBAT component of bio-plastic film. Taken together, the fungal and bacterial consortium investigated herein could be beneficial for efficient biodegradation of the commercial bio-plastic film at ambient conditions.


Assuntos
Alcenos , Ácidos Ftálicos , Poliésteres , Amido , Amido/química , Poliésteres/química , Adipatos , Fungos , Ésteres
13.
Nat Commun ; 15(1): 1970, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443335

RESUMO

Natural herbs, which contain pharmacologically active compounds, have been used historically as medicines. Conventionally, the analysis of chemical components in herbal medicines requires time-consuming sample separation and state-of-the-art analytical instruments. Nanopore, a versatile single molecule sensor, might be suitable to identify bioactive compounds in natural herbs. Here, a phenylboronic acid appended Mycobacterium smegmatis porin A (MspA) nanopore is used as a sensor for herbal medicines. A variety of bioactive compounds based on salvianolic acids, including caffeic acid, protocatechuic acid, protocatechualdehyde, salvianic acid A, rosmarinic acid, lithospermic acid, salvianolic acid A and salvianolic acid B are identified. Using a custom machine learning algorithm, analyte identification is performed with an accuracy of 99.0%. This sensing principle is further used with natural herbs such as Salvia miltiorrhiza, Rosemary and Prunella vulgaris. No complex sample separation or purification is required and the sensing device is highly portable.


Assuntos
Alcenos , Nanoporos , Plantas Medicinais , Polifenóis , Algoritmos , Extratos Vegetais
14.
J Org Chem ; 89(6): 4056-4066, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449357

RESUMO

An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.


Assuntos
Aminoácidos , Glicina , Alcenos , Peptídeos , Catálise
15.
J Org Chem ; 89(7): 4971-4978, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38509452

RESUMO

A streamlined and efficient approach to the key epoxide intermediate for the asymmetric synthesis of triazole antifungal agents is presented. This synthesis highlights a P(NMe2)3-mediated nonylidic olefination of α-keto ester, ensuring the exclusive formation of the requisite (Z)-alkene, followed by a highly enantioselective Jacobsen epoxidation to establish the two vicinal stereocenters in a single step. The versatility of this strategy is exemplified through the efficient synthesis of efinaconazole and ravuconazole.


Assuntos
Antifúngicos , Compostos de Epóxi , Antifúngicos/farmacologia , Estereoisomerismo , Alcenos , Triazóis
16.
Mar Pollut Bull ; 201: 116261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537567

RESUMO

Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT). The PBAT-PLA(polylactic acid, PLA) films, before and after degradation, were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR), the weight loss rate and water contact angle were measured. The results indicate that ZY-1 colonized on PBAT-PLA film, changed the functional groups and decreased water contact angle of PBAT-PLA film. Moreover, liquid chromatography mass spectrometry (LC-MS) analysis reveales that PBAT was degraded into its oligomers (TB, BTB) and monomers (T, A) during 10 days, and adipic acid (A) could be used as a sole carbon source. The whole genome sequencing analyses illustrate the mechanisms and enzymes such as PETase, carboxylesterases, arylesterase (PpEst) and genes like pobA, pcaBCDFGHIJKT, dcaAEIJK, paaGHJ involved in PBAT degradation. Therefore, the R. aggregatum ZY-1 will be a promising candidate of PBAT degradation.


Assuntos
Alcenos , Ácidos Ftálicos , Plásticos , Poliésteres , Poliésteres/química , Adipatos/química , Bactérias/metabolismo , Água
17.
Environ Pollut ; 346: 123532, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365075

RESUMO

Ozone has been reported to increase despite nitrogen oxides reductions during the COVID-19 pandemic, and ozone formation needs to be revisited using volatile organic compounds (VOCs), which are rarely measured during the pandemic. Here, a total of 98 VOCs species were monitored in an economy-active city in China from January 2021 to August 2022 to assess contributions to ozone formation during the pandemic. Total VOCs concentrations were 35.55 ± 21.47 ppb during the entire period, among which alkanes account for the largest fraction (13.78 ppb, 38.0%), followed by aromatics (6.16 ppb, 16.8%) and oxygenated VOCs (OVOCs, 5.69 ppb, 15.7%). Most VOCs groups (e.g., alkenes, OVOCs) and individual species (e.g., isoprene, methyl vinyl ketone) display obvious seasonal and diurnal variations, which are related to their sources and reactivities. No weekend effects of VOCs suggest limited influences from traffic emissions during pandemic. Aromatics and alkenes are the major contributors (39% and 33%) to ozone formation potential, largely driven by o/m/p-xylene (21%), ethylene (15%), toluene (9%). Secondary organic aerosol formation potential is dominated by toluene (>50%) despite its low proportion (5%). Further inclusion of VOCs and meteorology in the Random Forest model shows good ozone prediction performance (R2 = 0.77-0.86, RMSE = 11.95-19.91 µg/m3, MAE = 8.89-14.58 µg/m3). VOCs and NO2 contribute >50% of total importance with the largest difference in importance ratio of VOCs/NO2 in the summer and winter, implying ozone formation regime may vary. No seasonal variations in importance of meteorology are observed, while importance of other variables (e.g., PM2.5) is highest in the summer. This work identifies critical VOCs groups and species for ozone formation during the pandemic, and demonstrates the feasibility of machine learning algorithms in elucidation of ozone formation mechanisms.


Assuntos
Poluentes Atmosféricos , COVID-19 , Ozônio , Compostos Orgânicos Voláteis , Xilenos , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Pandemias , Ozônio/análise , Algoritmo Florestas Aleatórias , Dióxido de Nitrogênio , Tolueno , Alcenos , China , Monitoramento Ambiental
18.
Science ; 383(6685): 849-854, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386756

RESUMO

Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.


Assuntos
Alcaloides , Briozoários , Alcaloides/síntese química , Alcenos/química , Azidas/química , Elétrons , Animais , Catálise , Oxirredução
19.
J Environ Manage ; 353: 120225, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330837

RESUMO

China's growing demand for bulk chemicals and concerns regarding energy security are scaling up coal-to-olefins (CTO) production. Three generations of independent dimethyl ether/methanol-to-olefins technologies have been successively launched with greatly improved production efficiencies. However, to date, widespread concerns regarding the intensive environmental impacts and potential economic risks have not been addressed in the context of this industrialization. Here we show that, through the technological progress from the first to the third generation, life cycle energy consumption, water consumption, and carbon emissions can be reduced to 119.5 GJ/t, 27.6 t/t, and 9.1 t CO2-eq/t, respectively, and human health damage, ecosystem quality damage, and resource scarcity impacts can be decreased by 40.5 %, 50.1 %, and 16.4 %, respectively. This is accompanied by an excellent performance in terms of production cost, net present value, and internal return rate at 792.5 USD/t, 173.4 USD/t, and 19.4 %, respectively. Substantial environmental and economic benefits can be gained by coupling renewables in the form of using green hydrogen from solar and wind power to synthesize methanol. Particularly, life cycle carbon emissions and resource scarcity impacts are reduced by 23.4 % and 22.4 %, respectively, exceeding the reduction in technological progress. However, coupling renewables increases the life cycle energy consumption to 154.5 GJ/t, counteracting the benefits of technological progress. Our results highlight the importance of technological progress and coupled renewables for enhancing the sustainability of the CTO industry.


Assuntos
Alcenos , Carvão Mineral , Humanos , Ecossistema , Metanol , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , China
20.
Chem Pharm Bull (Tokyo) ; 72(2): 179-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311392

RESUMO

The total synthesis of the natural bicyclo[3.3.0]furanolactone polyketide, plakortone Q, was achieved in 24 steps from (R)-Roche ester. The main feature of this synthetic strategy is the stereoselective construction of a central tetrahydrofuran moiety with four consecutive stereoisomeric centers using the Upjohn dihydroxylation of oxiranyl-substituted alkenes and acid-mediated 5-endo-tet cyclization.


Assuntos
Policetídeos , Ciclização , Estereoisomerismo , Alcenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...