Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.816
Filtrar
1.
Food Chem ; 462: 140992, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208723

RESUMO

The development and manufacture of high-quality starch are a new research focus in food science. Here, transglutaminase was used in the wet processing of glutinous rice flour to prepare customized sweet dumplings. Transglutaminase (0.2 %) lowered protein loss in wet processing and reduced the crystallinity and viscosity of glutinous rice flour. Moreover, it lowered the cracking and cooking loss of sweet dumplings after freeze-thaw cycles, and produced sweet dumplings with reduced hardness and viscosity, making them more suitable for people with swallowing difficulties. Additionally, in sweet dumplings with 0.2 % transglutaminase, the encapsulation of starch granules by the protein slowed down the digestion and reduced the final hydrolysis rate, which are beneficial for people with weight and glycemic control issues. In conclusion, this study contributes to the production of tasty, customized sweet dumplings.


Assuntos
Digestão , Farinha , Oryza , Amido , Transglutaminases , Oryza/química , Oryza/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Farinha/análise , Amido/química , Amido/metabolismo , Manipulação de Alimentos , Humanos , Viscosidade , Culinária , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biocatálise
2.
Food Chem ; 462: 140974, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197239

RESUMO

Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.


Assuntos
Chenopodium quinoa , Emulsificantes , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Amido , Chenopodium quinoa/química , Amido/química , Emulsões/química , Emulsificantes/química , Proteínas de Plantas/química , Tamanho da Partícula , Reologia
3.
Food Chem ; 462: 140949, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213976

RESUMO

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.


Assuntos
Antioxidantes , Hidrogéis , Mangifera , Extratos Vegetais , Reologia , Amido , Mangifera/química , Hidrogéis/química , Extratos Vegetais/química , Amido/química , Antioxidantes/química , Viscosidade , Frutas/química , Fenóis/química
4.
Food Chem ; 462: 140987, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217748

RESUMO

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Assuntos
Culinária , Congelamento , Germinação , Campos Magnéticos , Oryza , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Farinha/análise , Amido/química , Amido/metabolismo , Água/química , Dureza , Manipulação de Alimentos , Sementes/química , Sementes/crescimento & desenvolvimento
5.
Food Chem ; 462: 140847, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226647

RESUMO

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Assuntos
Culinária , Fibras na Dieta , Oryza , Sementes , Oryza/química , Fibras na Dieta/análise , Sementes/química , Valor Nutritivo , Paladar , Humanos , Manipulação de Alimentos , Amido/química , Amilose/química , Amilose/análise
6.
Food Chem ; 462: 140993, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197246

RESUMO

To improve paste stability of cassava starch, including acid resistance, high-temperature shear resistance and freeze-thaw stability, cassava starch was modified by sequential maltogenic amylase and transglucosidase to form an optimally denser structure, or branched density (12.76 %), molecular density (15.17 g/mol/nm3), and the proportions of short-branched chains (41.41 % of A chains and 44.01 % of B1 chains). Viscosity stability (88.52 %) of modified starch was higher than that (64.92 %) of native starch. After acidic treatment for 1 h, the viscosity of modified starch and native starch decreased by 56.53 % and 65.70 %, respectively. Compared to native starch, modified starch had lower water loss in freeze-thaw cycles and less viscosity reduction during high-temperature and high-shear processing. So, the appropriate molecular density and denser molecule structure enhanced paste stabilities of modified starch. The outcome expands the food and non-food applications of cassava starch.


Assuntos
Manihot , Amido , Amido/química , Manihot/química , Viscosidade , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Glucosiltransferases/química , Glucosiltransferases/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273191

RESUMO

Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.


Assuntos
Mapeamento Cromossômico , Fagopyrum , Locos de Características Quantitativas , Amido , Fagopyrum/genética , Fagopyrum/metabolismo , Amido/genética , Amido/metabolismo , Polimorfismo de Nucleotídeo Único , Fenótipo , Amilose/metabolismo , Amilose/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Amilopectina/metabolismo , Amilopectina/genética , Genes de Plantas
8.
Nutrients ; 16(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275130

RESUMO

Amino acid (AA)-related inherited metabolic disorders (IMDs) and urea cycle disorders (UCDs) require strict dietary management including foods low in protein such as fruits, vegetables and starchy roots. Despite this recommendation, there are limited data on the AA content of many of these foods. The aim of this study is to describe an analysis of the protein and AA content of a range of fruits, vegetables and starchy roots, specifically focusing on amino acids (AAs) relevant to AA-related IMDs such as phenylalanine (Phe), methionine (Met), leucine (Leu), lysine (Lys) and tyrosine (Tyr). AA analysis was performed using high-performance liquid chromatography (HPLC) on 165 food samples. Protein analysis was also carried out using the Dumas method. Foods were classified as either 'Fruits', 'Dried fruits', 'Cruciferous vegetables', 'Legumes', 'Other vegetables' or 'Starchy roots'. 'Dried fruits' and 'Legumes' had the highest median values of protein, while 'Fruits' and 'Cruciferous vegetables' contained the lowest median results. 'Legumes' contained the highest and 'Fruits' had the lowest median values for all five AAs. Variations were seen in AA content for individual foods. The results presented in this study provide useful data on the protein and AA content of fruits, vegetables and starchy roots which can be used in clinical practice. This further expansion of the current literature will help to improve diet quality and metabolic control among individuals with AA-related IMDs and UCDs.


Assuntos
Aminoácidos , Proteínas Alimentares , Frutas , Raízes de Plantas , Amido , Verduras , Verduras/química , Frutas/química , Raízes de Plantas/química , Aminoácidos/análise , Proteínas Alimentares/análise , Amido/análise , Humanos , Doenças Metabólicas , Cromatografia Líquida de Alta Pressão/métodos , Valor Nutritivo
9.
Nutrients ; 16(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275354

RESUMO

A diet with low content of fermentable oligo-, di-, and monosaccharides and polyols (FODMAP) is established treatment for irritable bowel syndrome (IBS), with well-documented efficiency. A starch- and sucrose-reduced diet (SSRD) has shown similar promising effects. The primary aim of this randomized, non-inferiority study was to test SSRD against low FODMAP and compare the responder rates (RR = ∆Total IBS-SSS ≥ -50) to a 4-week dietary intervention of either diet. Secondary aims were to estimate responders of ≥100 score and 50% reduction; effects on extraintestinal symptoms; saturation; sugar craving; anthropometric parameters; and blood pressure. 155 IBS patients were randomized to SSRD (n = 77) or low FODMAP (n = 78) for 4 weeks, with a follow-up 5 months later without food restrictions. The questionnaires Rome IV, IBS-severity scoring system (IBS-SSS), and visual analog scale for IBS (VAS-IBS) were completed at baseline and after 2 and 4 weeks and 6 months. Weight, height, waist circumference, and blood pressures were measured. Comparisons were made within the groups and between changes in the two groups. There were no differences between groups at baseline. The responder rate of SSRD was non-inferior compared with low FODMAPs at week 2 (79.2% vs. 73.1%; p = 0.661;95% confidence interval (CI) = -20-7.2) and week 4 (79.2% vs. 78.2%; p = 1.000;95%CI = -14-12). Responder rate was still high when defined stricter. All gastrointestinal and extraintestinal symptoms were equally improved (p < 0.001 in most variables). SSRD rendered greater reductions in weight (p = 0.006), body mass index (BMI) (p = 0.005), and sugar craving (p = 0.05), whereas waist circumference and blood pressure were equally decreased. Weight and BMI were regained at follow-up. In the SSRD group, responders at 6 months still had lowered weight (-0.7 (-2.5-0.1) vs. 0.2 (-0.7-2.2) kg; p = 0.005) and BMI (-0.25 (-0.85-0.03) vs. 0.07 (-0.35-0.77) kg/m2; p = 0.009) compared with baseline in contrast to non-responders. Those who had tested both diets preferred SSRD (p = 0.032). In conclusion, a 4-week SSRD intervention was non-inferior to low FODMAP regarding responder rates of gastrointestinal IBS symptoms. Furthermore, strong reductions of extraintestinal symptoms were found in both groups, whereas reductions in weight, BMI, and sugar craving were most pronounced following SSRD.


Assuntos
Síndrome do Intestino Irritável , Amido , Humanos , Síndrome do Intestino Irritável/dietoterapia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Amido/administração & dosagem , Resultado do Tratamento , Fermentação , Polímeros , Monossacarídeos , Dieta com Restrição de Carboidratos/métodos , Sacarose Alimentar/administração & dosagem , Oligossacarídeos , Dissacarídeos/administração & dosagem , Pressão Sanguínea
10.
J Hazard Mater ; 479: 135592, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217930

RESUMO

Microplastics (MPs) are increasingly entering agricultural soils, often from the breakdown of agricultural plastics (e.g., mulching films). This study investigates the effects of realistic MPs from different mulching films: two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-blended polybutylene adipate co-terephthalate; PBAT-BD-1 and PBAT-BD-2). MPs were mixed into Lufa 2.2 soil at a concentration range from 0.005 % to 5 % (w/w dry soil), wide enough to reflect both realistic environmental levels and "worst-case scenarios". Effects on Enchytraeus crypticus reproduction over two generations and six important soil properties were studied. PBAT MPs notably reduced enchytraeid reproduction in the F0 generation, with a maximum decrease of 35.5 ± 9.6 % at 0.5 % concentration. F1 generation was unaffected by PBAT contamination. PE MPs had a more substantial reproductive impact, with up to a 55.3 ± 9.7 % decrease at 5 % PE-1 concentration compared to the control, showing a dose-related effect except for 1 %. Both MP types also significantly affected soil water holding capacity, pH, and total carbon. Other soil properties remained unaffected. Our results highlight the potential negative impacts of MPs originating from real agricultural plastics on soil health and raise concerns about the role of agricultural plastics in sustainable agriculture and food safety.


Assuntos
Agricultura , Microplásticos , Reprodução , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Microplásticos/toxicidade , Solo/química , Animais , Reprodução/efeitos dos fármacos , Polietileno/química , Oligoquetos/efeitos dos fármacos , Plásticos/química , Poliésteres/química , Amido/química
11.
Carbohydr Polym ; 346: 122570, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245477

RESUMO

This study investigated the influence of Konjac Glucomannan (KGM) with varying degrees of polymerization (DKGMx) on the gelatinization and retrogradation characteristics of wheat starch, providing new insights into starch-polysaccharide interactions. This research uniquely focuses on the effects of DKGMx, utilizing multidisciplinary approaches including Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), rheological testing, Low-Field Nuclear Magnetic Resonance (LF-NMR), and molecular simulations to assess the effects of DKGMx on gelatinization temperature, viscosity, structural changes post-retrogradation, and molecular interactions. Our findings revealed that higher degrees of polymerization (DP) of DKGMx significantly enhanced starch's pasting viscosity and stability, whereas lower DP reduced viscosity and interfered with retrogradation. High DP DKGMx promoted retrogradation by modifying moisture distribution. Molecular simulations revealed the interplay between low DP DKGMx and starch molecules. These interactions, characterized by increased hydrogen bonds and tighter binding to more starch chains, inhibited starch molecular rearrangement. Specifically, low DP DKGMx established a dense hydrogen bond network with starch, significantly restricting molecular mobility and rearrangement. This study provides new insights into the role of the DP of DKGMx in modulating wheat starch's properties, offering valuable implications for the functional improvement of starch-based foods and advancing starch science.


Assuntos
Mananas , Polimerização , Amido , Triticum , Triticum/química , Amido/química , Viscosidade , Mananas/química , Ligação de Hidrogênio , Reologia , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria
12.
Carbohydr Polym ; 346: 122592, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245484

RESUMO

Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.


Assuntos
Engenharia Metabólica , Solanum tuberosum , Amido , Solanum tuberosum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/química , Amido/química , Amido/metabolismo , Amido/biossíntese , Engenharia Metabólica/métodos , Tubérculos/metabolismo , Tubérculos/química , Amilose/biossíntese , Amilose/metabolismo , Amilose/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
Carbohydr Polym ; 346: 122608, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245492

RESUMO

Conductive hydrogels have been widely used in wearable electronics due to their flexible, conductive and adjustable properties. With ever-growing demand for sustainable and biocompatible sensing materials, biopolymer-based hydrogels have drawn significant attention. Among them, starch-based hydrogels have a great potential for wearable electronics. However, it remains challenging to develop multifunctional starch-based hydrogels with high stretchability, good conductivity, excellent durability and high sensitivity. Herein, amylopectin and ionic liquid were introduced into a hydrophobic association hydrogel to endow it with versatility. Benefiting from the synergistic effect of amylopectin and ionic liquid, the hydrogel exhibited excellent mechanical properties (the elongation of 2540 % with a Young's modulus of 12.0 kPa and a toughness of 1.3 MJ·m-3), self-recovery, good electrical properties (a conductivity of 1.8 S·m-1 and electrical self-healing), high sensitivity (gauge factor up to 26.85) and excellent durability (5850 cycles). The above properties of the hydrogel were closely correlated to its internal structure from hydrophobic association, H-bonding and electrostatic interaction, and can be regulated by changing the component contents. A wireless wearable sensor based on the hydrogel realized accurate and stable monitoring of joint motions and expression changes. This work demonstrates a kind of promising biopolymer-based materials as candidates for high-performance flexible wearable sensors.


Assuntos
Condutividade Elétrica , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Líquidos Iônicos/química , Humanos , Amido/química , Amilopectina/química , Tecnologia sem Fio , Materiais Biocompatíveis/química
14.
Carbohydr Polym ; 346: 122615, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245495

RESUMO

This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.


Assuntos
Polifenóis , Sementes , Amido , Chá , Polifenóis/química , Amido/química , Sementes/química , Chá/química , Ligação de Hidrogênio , Reologia
15.
Carbohydr Polym ; 346: 122618, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245527

RESUMO

Starch is one of the natural encapsulant materials widely used in food, pharmaceutical and cosmetic industries. Starch with high amylose content (above 40 %, w/w) is prone to form single helices V-type allomorph with a hydrophilic outer surface and a hydrophobic inner cavity making them suitable for encapsulation of hydrophobic compounds such as essential oils, fatty acids, and vitamins. Pea starch obtained from pea protein processing industries have a high amylose content (40 %, w/w) rendering them unsuitable for direct food applications as ingredients. Therefore, in this study, an in-house spraying procedure was used to synthesize nanoparticles using pea starch, to encapsulate neem oil, a natural antimicrobial compound obtained from neem plant (Azadirachta indica) seed. The synthesis of the oil-encapsulated starch nanoparticles (OESNP) was optimized using a Box-Behnken experimental design to study the influence of the processing parameters such as the initial starch concentration, homogenization speed, duration of homogenization, sample injection rate, and quantity of antisolvent (ethanol). The optimized sample showed an 80-90 % encapsulation efficiency and particle size of <500 nm. The spherical OESNPs also demonstrated sustained release of the oil compared to free oil when dispersed in water. X-ray diffraction analysis revealed the coexistence of C-type and V-type polymorphs in the loaded and unloaded nanoparticles. It is concluded that the synthesized OESNPs with controlled release hold the potential to utilize industrial pea starch waste for the delivery of natural pesticides in agriculture.


Assuntos
Glicerídeos , Nanopartículas , Pisum sativum , Amido , Pisum sativum/química , Nanopartículas/química , Amido/química , Glicerídeos/química , Tamanho da Partícula , Terpenos/química , Óleos de Plantas/química , Agricultura/métodos , Azadirachta/química , Amilose/química
16.
Carbohydr Polym ; 346: 122639, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245530

RESUMO

Molecular weight (Mw) of ligand-mediated nanocarriers plays a pivotal role in their architecture and properties. In this study, self-assembled ovalbumin (OVA)-loaded nanoparticles were meticulously engineered by starch polyelectrolytes with different Mw. Results unveiled that, tailoring Mw of GRGDS pentapeptides-grafted carboxymethyl starch (G-CMS) displayed strong binding-affinity and transport efficiency through microfold cells (M cells) pathway in the simulated intestinal epithelial cell monolayer in which M cells were randomly located in the Caco-2 cells monolayer. Notably, nanoparticles assembled from G-CMS with relatively higher Mw exhibited more compact structures due to the stronger interactions between layers compared to that with relatively lower Mw, which rendered remarkably stable and only 19.01 % in vitro OVA leakage under conditions of the upper gastrointestinal tract. Subsequently, more intact nanoparticles reached M cells after in vitro digestion and exhibited higher transport efficiency through the M cells pathways (apparent permeability: 9.38 × 10-5 cm/s) than Caco-2 cells, attributing to specific- and non-specific binding affinity towards M cells. Therefore, optimal Mw tailoring of starch polyelectrolytes can mediate the molecular interactions among their assembled layers and the interactions with M cells to balance the structural compactness, release and transport efficacy of nanoparticles, holding promise for advancing M cells-targeting oral delivery technologies.


Assuntos
Portadores de Fármacos , Peso Molecular , Nanopartículas , Amido , Humanos , Amido/química , Amido/análogos & derivados , Amido/metabolismo , Células CACO-2 , Nanopartículas/química , Portadores de Fármacos/química , Ovalbumina/química , Ovalbumina/metabolismo , Liberação Controlada de Fármacos , Transporte Biológico , Células M
17.
Carbohydr Polym ; 346: 122647, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245532

RESUMO

Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Mesalamina , Nanofibras , Pectinas , Amido , Mesalamina/química , Mesalamina/farmacologia , Mesalamina/administração & dosagem , Animais , Células CACO-2 , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Nanofibras/química , Nanofibras/toxicidade , Suínos , Pectinas/química , Amido/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem
18.
Physiol Plant ; 176(5): e14522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39248017

RESUMO

Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.


Assuntos
Acer , Amido , Água , Água/metabolismo , Acer/metabolismo , Acer/fisiologia , Amido/metabolismo , Betula/metabolismo , Betula/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Secas , Metabolismo dos Carboidratos , Xilema/metabolismo , Madeira/metabolismo , Plântula/metabolismo , Plântula/fisiologia
19.
Carbohydr Polym ; 344: 122525, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218548

RESUMO

Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.


Assuntos
Diabetes Mellitus , Amido , Amido/química , Amido/metabolismo , Humanos , Diabetes Mellitus/metabolismo , Sintase do Amido/metabolismo , Digestão , Estrutura Molecular , Animais
20.
Carbohydr Polym ; 345: 122561, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227100

RESUMO

The digestibility of starch is affected by amylose content, and increasing amylopectin chain length which can be manipulated by alterations to genes encoding starch-branching enzymes (SBEs). We investigated the impact of Cas9-mediated mutagenesis of SBEs in potato on starch structural properties and digestibility. Four potato starches with edited SBE genes were tested. One lacked SBE1 and SBE2, two lacked SBE2 and had reduced SBE1, and one had reduced SBE2 only. Starch structure and thermal properties were characterised by DSC and XRD. The impact of different thermal treatments on digestibility was studied using an in vitro digestion protocol. All native potato starches were resistant to digestion, and all gelatinised starches were highly digestible. SBE modified starches had higher gelatinisation temperatures than wild type potatoes and retrograded more rapidly. Gelatinisation and 18 h of retrogradation, increased gelatinisation enthalpy, but this did not translate to differences in digestion. Following 7 days of retrogradation, starch from three modified SBE starch lines was less digestible than starch from wild-type potatoes, likely due to the recrystallisation of the long amylopectin chains. Our results indicate that reductions in SBE in potato may be beneficial to health by increasing the amount of fibre reaching the colon after retrogradation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Mutagênese , Solanum tuberosum , Amido , Solanum tuberosum/genética , Solanum tuberosum/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amido/química , Amido/metabolismo , Digestão , Sistemas CRISPR-Cas/genética , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Amilose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA