Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.602
Filtrar
1.
Arch Microbiol ; 206(9): 377, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141120

RESUMO

The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept Ì´ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).


Assuntos
Fabaceae , Micrococcus , Hidrolisados de Proteína , Micrococcus/metabolismo , Micrococcus/enzimologia , Concentração de Íons de Hidrogênio , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Peso Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Peru , Temperatura , Serina Proteases/metabolismo , Serina Proteases/isolamento & purificação , Serina Proteases/química , Estabilidade Enzimática , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Hidrólise , Cinética
2.
Am J Reprod Immunol ; 92(2): e13913, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113666

RESUMO

PROBLEM: To determine whether altered concentrations of various inflammation/immune-, acute phase-, extracellular matrix-, adhesion-, and serine protease-related proteins in the amniotic fluid (AF) are independently associated with microbial invasion of the amniotic cavity and/or intra-amniotic inflammation (MIAC/IAI), imminent spontaneous preterm delivery (SPTD; ≤7 days), and major neonatal morbidity/mortality (NMM) in women with early preterm prelabor rupture of membranes (PPROM). METHOD OF STUDY: This was a retrospective cohort study involving 111 singleton pregnant women with PPROM (24-31 weeks) undergoing amniocentesis to diagnose MIAC/IAI. The following proteins were measured in stored AF samples by enzyme-linked immunosorbent assay (ELISA): APRIL, DKK-3, Gal-3BP, IGFBP-2, IL-8, VDBP, lumican, MMP-2, MMP-8, SPARC, TGFBI, TGF-ß1, E-selectin, ICAM-5, P-selectin, haptoglobin, hepcidin, SAA1, kallistatin, and uPA. RESULTS: Multivariate logistic regression analyses revealed that (i) elevated APRIL, IL-8, MMP-8, and TGFBI levels in the AF, reduced lumican and SPARC levels in the AF, and high percentages of samples above the lower limit of quantification for AF TGF-ß1 and uPA were significantly associated with MIAC/IAI; (ii) elevated AF levels of IL-8 and MMP-8 were significantly associated with SPTD within 7 days; and (iii) elevated AF IL-6 levels were significantly associated with increased risk for major NMM, when adjusted for baseline covariates. CONCLUSION: ECM (lumican, SPRAC, TGFBI, and TGF-ß1)- and serine protease (uPA)-associated proteins in the AF are involved in the regulation of the host response to infection/inflammation in the amniotic cavity, whereas AF inflammation (IL-8, MMP-8, and IL-6)-associated mediators are implicated in the development of preterm parturition and major NMM in early PPROM.


Assuntos
Líquido Amniótico , Ruptura Prematura de Membranas Fetais , Humanos , Feminino , Gravidez , Líquido Amniótico/metabolismo , Líquido Amniótico/imunologia , Ruptura Prematura de Membranas Fetais/metabolismo , Adulto , Estudos Retrospectivos , Inflamação/metabolismo , Recém-Nascido , Serina Proteases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Fase Aguda/metabolismo , Nascimento Prematuro , Estudos de Coortes , Corioamnionite/metabolismo , Corioamnionite/imunologia
3.
Nat Commun ; 15(1): 6519, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174512

RESUMO

Cathepsin C (CatC) is an enzyme which regulates the maturation of neutrophil serine proteases (NSPs) essential for neutrophil activation. Activated neutrophils are key players in the innate immune system, and are also implicated in the etiology of various inflammatory diseases. This study aims to demonstrate a therapeutic potential for CatC inhibitors against disorders in which activated neutrophil-derived neutrophil extracellular traps (NETs) play a significant role. We demonstrate that a CatC inhibitor, MOD06051, dose-dependently suppresses the cellular activity of NSPs, including neutrophil elastase (NE), in vitro. Neutrophils derived from MOD06051-administered rats exhibit significantly lower NE activity and NET-forming ability than controls. Furthermore, MOD06051 dose-dependently ameliorates vasculitis and significantly decreases NETs when administered to a rat model of myeloperoxidase (MPO)-antineutrophil cytoplasmic antibody-associated vasculitis (AAV). These findings suggest that CatC inhibition is a promising strategy to reduce neutrophil activation and improve activated neutrophil-mediated diseases such as MPO-AAV.


Assuntos
Catepsina C , Armadilhas Extracelulares , Elastase de Leucócito , Ativação de Neutrófilo , Neutrófilos , Peroxidase , Catepsina C/metabolismo , Catepsina C/antagonistas & inibidores , Animais , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Humanos , Ratos , Elastase de Leucócito/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Masculino , Peroxidase/metabolismo , Peroxidase/antagonistas & inibidores , Serina Proteases/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia
4.
Bioorg Chem ; 152: 107734, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167871

RESUMO

Because of the high similarity in structure and sequence, it is challenging to distinguish the S1 pocket among serine proteases, primarily due to the only variability at residue 190 (A190 and S190). Peptide or protein-based inhibitors typically target the negatively charged S1 pocket using lysine or arginine as the P1 residue, yet neither discriminates between the two S1 pocket variants. This study introduces two arginine analogues, L-4-guanidinophenylalanine (12) and L-3-(N-amidino-4-piperidyl)alanine (16), as novel P1 residues in peptide inhibitors. 16 notably enhances affinities across all tested proteases, whereas 12 specifically improved affinities towards proteases possessing S190 in the S1 pocket. By crystallography and molecular dynamics simulations, we discovered a novel mechanism involving a water exchange channel at the bottom of the S1 pocket, modulated by the variation of residue 190. Additionally, the specificity of 12 towards the S190-presenting S1 pocket is dependent on this water channel. This study not only introduces novel P1 residues to engineer inhibitory potency and specificity of peptide inhibitors targeting serine proteases, but also unveils a water-mediated molecular mechanism of targeting serine proteases.


Assuntos
Arginina , Simulação de Dinâmica Molecular , Serina Proteases , Inibidores de Serina Proteinase , Água , Água/química , Serina Proteases/metabolismo , Serina Proteases/química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/síntese química , Arginina/química , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga , Cristalografia por Raios X
5.
mBio ; 15(9): e0127024, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39136457

RESUMO

Rhomboid proteases are universally conserved and facilitate the proteolysis of peptide bonds within or adjacent to cell membranes. While eukaryotic rhomboid proteases have been demonstrated to harbor unique cellular roles, prokaryotic members have been far less characterized. For the first time, we demonstrate that Vibrio cholerae expresses two active rhomboid proteases that cleave a shared substrate at distinct sites, resulting in differential localization of the processed protein. The rhomboid protease rhombosortase (RssP) was previously found to process a novel C-terminal domain called GlyGly-CTERM, as demonstrated by its effect on the extracellular serine protease VesB during its transport through the V. cholerae cell envelope. Here, we characterize the substrate specificity of RssP and GlpG, the universally conserved bacterial rhomboid proteases. We show that RssP has distinct cleavage specificity from GlpG, and specific residues within the GlyGly-CTERM of VesB target it to RssP over GlpG, allowing for efficient proteolysis. RssP cleaves VesB within its transmembrane domain, whereas GlpG cleaves outside the membrane in a disordered loop that precedes the GlyGly-CTERM. Cleavage of VesB by RssP initially targets VesB to the bacterial cell surface and, subsequently, to outer membrane vesicles, while GlpG cleavage results in secreted, fully soluble VesB. Collectively, this work builds on the molecular understanding of rhomboid proteolysis and provides the basis for additional rhomboid substrate recognition while also demonstrating a unique role of RssP in the maturation of proteins containing a GlyGly-CTERM. IMPORTANCE: Despite a great deal of insight into the eukaryotic homologs, bacterial rhomboid proteases have been relatively understudied. Our research aims to understand the function of two rhomboid proteases in Vibrio cholerae. This work is significant because it will help us better understand the catalytic mechanism of rhomboid proteases as a whole and assign a specific role to a unique subfamily whose function is to process a subset of effector molecules secreted by V. cholerae and other pathogenic bacteria.


Assuntos
Proteínas de Bactérias , Proteólise , Vibrio cholerae , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Endopeptidases/metabolismo , Endopeptidases/genética , Endopeptidases/química , Processamento de Proteína Pós-Traducional , Serina Proteases/metabolismo , Serina Proteases/genética , Serina Proteases/química
6.
Int J Biol Macromol ; 278(Pt 4): 135041, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182889

RESUMO

Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.


Assuntos
Proteogenômica , Animais , Proteogenômica/métodos , Fosfolipases A2/metabolismo , Humanos , Viperidae/metabolismo , Serina Proteases/metabolismo , Serina Proteases/genética , Crotalinae , Serpentes Peçonhentas
7.
Viruses ; 16(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39205224

RESUMO

The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.


Assuntos
Antivirais , Farmacorresistência Viral , Genótipo , Hepacivirus , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , Hepacivirus/enzimologia , Hepacivirus/efeitos dos fármacos , Farmacorresistência Viral/genética , Antivirais/farmacologia , Antivirais/química , Humanos , Mutação , Simulação de Dinâmica Molecular , Hepatite C/virologia , Hepatite C/tratamento farmacológico , Sítios de Ligação , Ligação Proteica , Farmacóforo , Serina Proteases , Proteases Virais , RNA Helicases DEAD-box , Nucleosídeo-Trifosfatase , Serina Endopeptidases
8.
Commun Biol ; 7(1): 969, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122806

RESUMO

Serine proteases are important environmental contributors of enterovirus biocontrol. However, the structural features of molecular interaction accounting for the susceptibility of enteroviruses to proteases remains unexplained. Here, we describe the molecular mechanisms involved in the recruitment of serine proteases to viral capsids. Among the virus types used, coxsackievirus A9 (CVA9), but not CVB5 and echovirus 11 (E11), was inactivated by Subtilisin A in a host-independent manner, while Bovine Pancreatic Trypsin (BPT) only reduced CVA9 infectivity in a host-dependent manner. Predictive interaction models of each protease with capsid protomers indicate the main targets as internal disordered protein (IDP) segments exposed either on the 5-fold vertex (DE loop VP1) or at the 5/2-fold intersection (C-terminal end VP1) of viral capsids. We further show that a functional binding protease/capsid depends on both the strength and the evolution over time of protease-VP1 complexes, and lastly on the local adaptation of proteases on surrounding viral regions. Finally, we predicted three residues on CVA9 capsid that trigger cleavage by Subtilisin A, one of which may act as a sensor residue contributing to enzyme recognition on the DE loop. Overall, this study describes an important biological mechanism involved in enteroviruses biocontrol.


Assuntos
Proteínas do Capsídeo , Capsídeo , Serina Proteases , Capsídeo/metabolismo , Serina Proteases/metabolismo , Serina Proteases/química , Serina Proteases/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Humanos , Enterovirus/enzimologia , Enterovirus/fisiologia , Animais , Enterovirus Humano B/fisiologia , Enterovirus Humano B/enzimologia
9.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000189

RESUMO

Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mucosa Gástrica , Helicobacter pylori , Organoides , Humanos , Caderinas/metabolismo , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antígenos de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Antígenos CD/metabolismo , Estômago/microbiologia , Estômago/patologia , Linhagem Celular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/microbiologia , Serina Proteases
10.
Enzyme Microb Technol ; 180: 110478, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074421

RESUMO

Chronic wounds typically comprise of necrotic tissue and dried secretions, often culminating in the formation of a thick and tough layer of dead skin known as eschar. Removal of eschar is imperative to facilitate wound healing. Conventional approach for eschar removal involves surgical excision and grafting, which can be traumatic and frequently leads to viable tissue damage. There has been growing interest in the use of enzymatic agents for a gentler approach to debridement, utilizing proteolytic enzymes. In this study, a purified intracellular recombinant serine protease from Bacillus sp. (SPB) and its cream formulation were employed to evaluate their ability to degrade artificial wound eschar; composed of collagen, fibrin, and elastin. Degradation was assessed based on percentage weight reduction of eschar biomass, analysis via sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and scanning electron microscopy (SEM). Both SPB and its cream formulation were able to degrade up to 50 % artificial wound eschar, with the SPB cream maintaining its degradation efficiency for up to 24 hours. Additionally, the SPB-based cream demonstrated the ability to hydrolyze proteinaceous components of eschars individually (fibrin and collagen) as determined through qualitative assessment. These findings suggest that SPB holds promise for the debridement of wound eschar.


Assuntos
Bacillus , Desbridamento , Fibrina , Serina Proteases , Cicatrização , Serina Proteases/metabolismo , Cicatrização/efeitos dos fármacos , Fibrina/metabolismo , Bacillus/enzimologia , Humanos , Colágeno/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Elastina/metabolismo
11.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956295

RESUMO

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Assuntos
Bacillaceae , Polilisina , Serina Proteases , Streptomyces , Streptomyces/enzimologia , Polilisina/farmacologia , Polilisina/química , Polilisina/metabolismo , Serina Proteases/metabolismo , Bacillaceae/enzimologia , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Genoma Viral , Animais , Norovirus/efeitos dos fármacos , Norovirus/genética , Inativação de Vírus/efeitos dos fármacos , Caliciviridae/genética , Antivirais/farmacologia
12.
BMC Res Notes ; 17(1): 182, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951856

RESUMO

OBJECTIVE: Livestock droppings cause some environmental problems, but they have the potential to be used as effective biomass resources. The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is suitable for efficiently processing such resources. By using BSF larvae for the disposal of livestock droppings, we can obtain two valuable products: protein resources and organic fertilizer. However, there is insufficient research on the digestive enzymes suitable for processing this waste. Here, we aimed to construct an efficient BSF processing system using livestock droppings, and we explored the digestive enzymes involved in this process. RESULTS: First, we investigated the characteristics of transcripts expressed in the midgut of BSF larvae and found that immune response-related genes were expressed in the midgut. Then, we investigated digestive enzymes and identified a novel serine protease, HiBrachyurin, whose mRNA was highly expressed in the posterior midgut when BSF larvae fed on horse droppings. Despite the low protein content of horse droppings, larvae that fed on horse droppings accumulated more protein than those in the other groups. Therefore, HiBrachyurin may contribute to digestibility in the early stage of protein degradation in BSF larvae fed on horse droppings.


Assuntos
Dípteros , Larva , Serina Proteases , Animais , Dípteros/genética , Dípteros/metabolismo , Dípteros/enzimologia , Larva/metabolismo , Larva/genética , Cavalos , Serina Proteases/metabolismo , Serina Proteases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Fezes
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39020255

RESUMO

BACKGROUND: Vibrio vulnificus NCIMB2137, a Gram-negative, metalloprotease negative estuarine strain was isolated from a diseased eel. A 45 kDa chymotrypsin-like alkaline serine protease known as VvsA has been recently reported as one of the major virulence factor responsible for the pathogenesis of this strain. The vvsA gene along with a downstream gene vvsB, whose function is still unknown constitute an operon designated as vvsAB. OBJECTIVE: This study examines the contribution of VvsB to the functionality of VvsA. METHOD: In this study, VvsB was individually expressed using Rapid Translation System (RTS system), followed by an analysis of its role in regulating the serine protease activity of VvsA. RESULT: The proteolytic activity of VvsA increased upon the addition of purified VvsB to the culture supernatant of V. vulnificus. However, the attempts of protein expression using an E. coli system revealed a noteworthy observation that protein expression from the vvsA gene exhibited higher protease activity compared to that from the vvsAB gene within the cytoplasmic fraction. These findings suggest an intricate interplay between VvsB and VvsA, where VvsB potentially interacts with VvsA inside the bacterium and suppress the proteolytic activity. While outside the bacterial milieu, VvsB appears to stimulate the activation of inactive VvsA. CONCLUSION: The findings suggest that Vibrio vulnificus regulates VvsA activity through the action of VvsB, both intracellularly and extracellularly, to ensure its survival.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Serina Proteases , Vibrio vulnificus , Vibrio vulnificus/genética , Vibrio vulnificus/enzimologia , Vibrio vulnificus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Serina Proteases/metabolismo , Serina Proteases/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Proteólise , Óperon , Enguias/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vibrioses/microbiologia , Vibrioses/veterinária
14.
Am J Pathol ; 194(7): 1162-1170, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38880601

RESUMO

The placenta plays a crucial role in pregnancy success. ΔNp63α (p63), a transcription factor from the TP53 family, is highly expressed in villous cytotrophoblasts (CTBs), the epithelial stem cells of the human placenta, and is involved in CTB maintenance and differentiation. We examined the mechanisms of action of p63 by identifying its downstream targets. Gene expression changes were evaluated following overexpression and knockdown of p63 in the JEG3 choriocarcinoma cell line, using microarray-based RNA profiling. High-temperature requirement A4 (HTRA4), a placenta-specific serine protease involved in trophoblast differentiation and altered in preeclampsia, was identified as a gene reciprocally regulated by p63, and its expression was characterized in primary human placental tissues by RNA-sequencing and in situ hybridization. Potential p63 DNA-binding motifs were identified in the HTRA4 promoter, and p63 occupancy at some of these sites was confirmed using chromatin immunoprecipitation, followed by quantitative PCR in both JEG3 and trophoblast stem cells. These data begin to identify members of the transcriptional network downstream of p63, thus laying the groundwork for probing mechanisms by which this important transcription factor regulates trophoblast stemness and differentiation.


Assuntos
Fatores de Transcrição , Trofoblastos , Humanos , Trofoblastos/metabolismo , Feminino , Gravidez , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Placenta/metabolismo , Serina Proteases/metabolismo , Serina Proteases/genética , Regiões Promotoras Genéticas/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Transcrição Gênica
15.
Cancer Lett ; 596: 217004, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838765

RESUMO

Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Proteínas de Ligação a RNA , Ribonucleoproteínas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Ferroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proliferação de Células , Animais , Camundongos , Retroalimentação Fisiológica , Progressão da Doença , Linhagem Celular Tumoral , Masculino , Movimento Celular/genética , Feminino , Camundongos Nus , Prognóstico , Adenosina/análogos & derivados , Serina Proteases
16.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879328

RESUMO

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Assuntos
Beauveria , Beauveria/patogenicidade , Beauveria/genética , Beauveria/fisiologia , Animais , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Spodoptera/microbiologia , Esporos Fúngicos , Larva/microbiologia , Serina Proteases/metabolismo , Serina Proteases/genética , Controle Biológico de Vetores , Fusarium/patogenicidade , Fusarium/genética
17.
Int J Biol Macromol ; 273(Pt 2): 133147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878934

RESUMO

Wound healing involves several cellular and molecular pathways. Tridax procumbens activates genetic pathways with antibacterial, antioxidant, anticancer, and anti-inflammatory properties, aiding wound healing. This study purified Procumbenase, a serine protease from T. procumbens extract, using gel filtration (Sephadex G-75) and ion exchange (CM-Sephadex C-50) chromatography. Characterization involved analyses of protease activity, RP-HPLC, SDS-PAGE, gelatin zymogram, PAS staining, mass spectrometry, and circular dichroism. Optimal pH and temperature were determined. Protease type was identified using inhibitors. Wound-healing potential was evaluated through tensile strength, wound models, hydroxyproline estimation, and NIH 3T3 cell scratch analysis. In incision wound rat models, Procumbenase increased tensile strength on day 14 more than saline and Povidone­iodine. It increased wound contraction by 89 % after 10 days in excision wound models, attaining full contraction by day 15 and closure by day 21. Scarless wound healing was enhanced by 18 days of epithelialization against 22 and 21 days for saline and povidone­iodine. Procumbenase increased hydroxyproline concentration 2.53-fold (59.93 ± 2.89 mg/g) compared to saline (23.67 ± 1.86 mg/g). In NIH 3 T3 cell scratch assay, Procumbenase increased migration by 60.93 % (50 µg) and 60.57 % (150 µg) after 48 h. Thus, Procumbenase is the primary bioactive molecule in T. procumbens, demonstrates scar-free wound healing properties.


Assuntos
Extratos Vegetais , Serina Proteases , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Ratos , Células NIH 3T3 , Serina Proteases/metabolismo , Serina Proteases/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Cicatriz/tratamento farmacológico , Hidroxiprolina/metabolismo , Resistência à Tração
18.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891931

RESUMO

Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos , Tenebrio , Transcriptoma , Animais , Tenebrio/genética , Tenebrio/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Serina Proteases/genética , Serina Proteases/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Sequência de Aminoácidos
19.
Chem Commun (Camb) ; 60(56): 7168-7171, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38904189

RESUMO

We report a chemoselective and site-selective precision engineering of lysine in proteases. The mild and physiological reaction conditions keep their auto-degradation under control. Furthermore, it enables single-site ordered immobilization, enhancing protein digestion and peptide mapping efficiency.


Assuntos
Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lisina/química , Lisina/metabolismo , Serina Proteases/metabolismo , Serina Proteases/química
20.
ACS Chem Biol ; 19(7): 1409-1415, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38913607

RESUMO

Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases. Here, we report on the construction of qABPs based on the phosphinate warhead, exemplified by probes for the neutrophil serine proteases. The most successful probes show sub-stoichiometric reaction with human neutrophil elastase, efficient fluorescence quenching, and rapid unquenching of fluorescence upon reaction with target proteases.


Assuntos
Ésteres , Elastase de Leucócito , Serina Proteases , Ésteres/química , Humanos , Serina Proteases/metabolismo , Serina Proteases/química , Elastase de Leucócito/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácidos Fosfínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA