Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
1.
Biochemistry ; 63(18): 2335-2343, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231435

RESUMO

Prenylated-FMN (prFMN) is the cofactor used by the UbiD-like family of decarboxylases that catalyzes the decarboxylation of various aromatic and unsaturated carboxylic acids. prFMN is synthesized from reduced FMN and dimethylallyl phosphate (DMAP) by a specialized prenyl transferase, UbiX. UbiX catalyzes the sequential formation of two bonds, the first between N5 of the flavin and C1 of DMAP, and the second between C6 of the flavin and C3 of DMAP. We have examined the reaction of UbiX with both FMN and riboflavin. Although UbiX converts FMN to prFMN, we show that significant amounts of the N5-dimethylallyl-FMN intermediate are released from the enzyme during catalysis. With riboflavin as the substrate, UbiX catalyzes only a partial reaction, resulting in only N5-dimethylallyl-riboflavin being formed. Purification of the N5-dimethylallyl-FMN adduct allowed its structure to be verified by 1H NMR spectroscopy and its reactivity to be investigated. Surprisingly, whereas reduced prFMN oxidizes in seconds to form the stable prFMN semiquinone radical when exposed to air, N5-dimethylallyl-FMN oxidizes much more slowly over several hours; in this case, oxidation is accompanied by spontaneous hydrolysis to regenerate FMN. These studies highlight the important contribution that cyclization of the prenyl-derived ring of prFMN makes to the cofactor's biological activity.


Assuntos
Dimetilaliltranstransferase , Mononucleotídeo de Flavina , Prenilação , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Riboflavina/biossíntese , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboflavina/química , Compostos Organofosforados/metabolismo , Compostos Organofosforados/química , Catálise , Compostos Alílicos/metabolismo , Compostos Alílicos/química , Escherichia coli/metabolismo , Escherichia coli/genética , Carboxiliases , Hemiterpenos
2.
J Am Chem Soc ; 146(34): 23686-23691, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140691

RESUMO

Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.


Assuntos
Dimetilaliltranstransferase , Histidina , Histidina/química , Histidina/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Engenharia de Proteínas , Modelos Moleculares , Especificidade por Substrato , Imidazóis/química , Imidazóis/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3693-3705, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099344

RESUMO

Coumarins are natural products with benzopyran ring as the parent nucleus. Numerous coumarin derivatives exhibit a variety of pharmacological activities, including antibacterial, anti-inflammatory, antitumor, anti-coagulant, anti-osteoporotic, and insecticidal activities. Therefore, they play an important role in both medicine and agriculture. The development and utilization of coumarin derivatives have attracted increasing attention. The advancement of gene sequencing technology and the rapid progress in synthetic bio-logy have led to significant advancement in the biosynthesis of coumarin derivatives, and has received increasing attention from global researchers. This paper presents a comprehensive overview of the key biosynthesis-related enzymes of coumarin derivatives, such as cytochrome P450 enzyme(CYP450), prenyltransferase(PT), UDP-glucosyltransferase(UGT). Additionally, the pharmacological activities of these enzymes, including anti-tumor, anti-inflammatory, antioxidant, and antibacterial activities, are systematically summarized. This review aims to provide a valuable reference for the biosynthesis of coumarin derivatives and further exploration of their medicinal potential.


Assuntos
Cumarínicos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Humanos , Animais , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo
4.
Curr Opin Plant Biol ; 81: 102601, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991464

RESUMO

Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including C- and O-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.


Assuntos
Dimetilaliltranstransferase , Plantas , Prenilação , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Plantas/metabolismo , Plantas/enzimologia , Fenóis/metabolismo , Evolução Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
N Biotechnol ; 83: 66-73, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38960021

RESUMO

This study highlights the significance of overexpressing 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from the MEP (methylerythritol 4-phosphate) pathway, in addition to short-chain prenyltransferase fusions for the improved production of the diterpene, taxa-4,11-diene, the first committed intermediate in the production of anti-cancer drug paclitaxel. The results showed that the strain which has (i) the taxadiene synthase (txs) gene integrated into the genome, (ii) the MEP pathway genes overexpressed, (iii) the fpps-crtE prenyltransferases fusion protein and (iv) additional expression of 1-deoxy-d-xylulose-5-phosphate synthase (DXS), yielded the highest production of taxa-4,11-diene at 390 mg/L (26 mg/L/OD600). This represents a thirteen-fold increase compared to the highest reported concentration in B. subtilis. The focus on additional overexpression of DXS and utilizing short-chain prenyltransferase fusions underscores their pivotal role in achieving significant titer improvements in terpene biosynthesis.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Diterpenos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Pentosiltransferases/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Alcenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferases
6.
J Agric Food Chem ; 72(28): 15832-15840, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957132

RESUMO

Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.


Assuntos
Dimetilaliltranstransferase , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Pentanóis/metabolismo , Engenharia Metabólica , Flavonoides/metabolismo , Flavonoides/biossíntese , Hemiterpenos/metabolismo , Fermentação
7.
Org Lett ; 26(28): 5888-5892, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38976793

RESUMO

New diterpenoids are accessible from non-natural FPP derivatives as substrates for an enzymatic elongation cyclization cascade using the geranylgeranyl pyrophosphate synthase (GGPPS) from Streptomyces cyaneofuscatus and the spata-13,17-diene synthase (SpS) from Streptomyces xinghaiensis. This approach led to four new biotransformation products including three new cyclododecane cores and a macrocyclic ether. For the first time, a 1,12-terpene cyclization was observed when shifting the central olefinic double bond toward the geminial methyl groups creating a nonconjugated 1,4-diene.


Assuntos
Alquil e Aril Transferases , Dimetilaliltranstransferase , Diterpenos , Streptomyces , Diterpenos/química , Diterpenos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Streptomyces/enzimologia , Streptomyces/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Estrutura Molecular , Ciclização , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Biotransformação
8.
Mar Drugs ; 22(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057405

RESUMO

Traditional isolation methods often lead to the rediscovery of known natural products. In contrast, genome mining strategies are considered effective for the continual discovery of new natural products. In this study, we discovered a unique prenyltransferase (PT) through genome mining, capable of catalyzing the transfer of a prenyl group to an aromatic nucleus to form C-C or C-O bonds. A pair of new hydroxyphenylacetic acid derivative enantiomers with prenyl units, (±)-peniprenydiol A (1), along with 16 known compounds (2-17), were isolated from a marine fungus, Penicillium sp. W21C371. The separation of 1 using chiral HPLC led to the isolation of the enantiomers 1a and 1b. Their structures were established on the basis of extensive spectroscopic analysis, including 1D, 2D NMR and HRESIMS. The absolute configurations of the new compounds were determined by a modified Mosher method. A plausible biosynthetic pathway for 1 was deduced, facilitated by PT catalysis. In the in vitro assay, 2 and 3 showed promising inhibitory activity against Escherichia coli ß-glucuronidase (EcGUS), with IC50 values of 44.60 ± 0.84 µM and 21.60 ± 0.76 µM, respectively, compared to the positive control, D-saccharic acid 1,4-lactone hydrate (DSL). This study demonstrates the advantages of genome mining in the rational acquisition of new natural products.


Assuntos
Dimetilaliltranstransferase , Penicillium , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Penicillium/química , Fenilacetatos/farmacologia , Fenilacetatos/química , Fenilacetatos/isolamento & purificação , Estereoisomerismo
9.
Appl Microbiol Biotechnol ; 108(1): 421, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023782

RESUMO

Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.


Assuntos
Aminoácidos Aromáticos , Dimetilaliltranstransferase , Fenóis , Prenilação , Aminoácidos Aromáticos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Fenóis/metabolismo , Especificidade por Substrato , Estilbenos/metabolismo , Triptofano/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
10.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38874344

RESUMO

Candida albicans is a major fungal pathogen of humans that can cause serious systemic infections in vulnerable immunocompromised populations. One of its virulence attributes is its capacity to transition between yeast and filamentous morphologies, but our understanding of this process remains incomplete. Here, we analyzed data from a functional genomic screen performed with the C. albicans Gene Replacement And Conditional Expression collection to identify genes crucial for morphogenesis in host-relevant conditions. Through manual scoring of microscopy images coupled with analysis of each image using a deep learning-based method termed Candescence, we identified 307 genes important for filamentation in tissue culture medium at 37°C with 5% CO2. One such factor was orf19.5963, which is predicted to encode the prenyltransferase Nus1 based on sequence homology to Saccharomyces cerevisiae. We further showed that Nus1 and its predicted interacting partner Rer2 are important for filamentation in multiple liquid filament-inducing conditions as well as for wrinkly colony formation on solid agar. Finally, we highlight that Nus1 and Rer2 likely govern C. albicans morphogenesis due to their importance in intracellular trafficking, as well as maintaining lipid homeostasis. Overall, this work identifies Nus1 and Rer2 as important regulators of C. albicans filamentation and highlights the power of functional genomic screens in advancing our understanding of gene function in human fungal pathogens.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/genética , Candida albicans/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Hifas/crescimento & desenvolvimento
11.
Methods Enzymol ; 699: 1-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942500

RESUMO

Terpenes comprise the largest class of natural products and are used in applications spanning the areas of medicine, cosmetics, fuels, flavorings, and more. Copalyl diphosphate synthase from the Penicillium genus is the first bifunctional terpene synthase identified to have both prenyltransferase and class II cyclase activities within the same polypeptide chain. Prior studies of bifunctional terpene synthases reveal that these systems achieve greater catalytic efficiency by channeling geranylgeranyl diphosphate between the prenyltransferase and cyclase domains. A molecular-level understanding of substrate transit phenomena in these systems is highly desirable, but a long disordered polypeptide segment connecting the prenyltranferase and cyclase domains thwarts the crystallization of full-length enzymes. Accordingly, these systems are excellent candidates for structural analysis using cryo-electron microscopy (cryo-EM). Notably, these systems form hexameric or octameric oligomers, so the quaternary structure of the full-length enzyme may influence substrate transit between catalytic domains. Here, we describe methods for the preparation of bifunctional hexameric copalyl diphosphate synthase from Penicillium fellutanum (PfCPS). We also outline approaches for the preparation of cryo-EM grids, data collection, and data processing to yield two-dimensional and three-dimensional reconstructions.


Assuntos
Alquil e Aril Transferases , Microscopia Crioeletrônica , Penicillium , Penicillium/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/isolamento & purificação , Microscopia Crioeletrônica/métodos , Diterpenos/metabolismo , Diterpenos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/isolamento & purificação
12.
Methods Enzymol ; 699: 89-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942517

RESUMO

Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Diterpenos/metabolismo , Diterpenos/química , Ensaios Enzimáticos/métodos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Ciclização
13.
Angew Chem Int Ed Engl ; 63(36): e202409973, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837490

RESUMO

Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.


Assuntos
Prenilação , Ligantes , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/antagonistas & inibidores , Prenilação de Proteína
14.
ACS Chem Biol ; 19(6): 1303-1310, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743035

RESUMO

Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.


Assuntos
Dimetilaliltranstransferase , Isoquinolinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimologia , Humanos , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Linhagem Celular Tumoral , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Terpenos/metabolismo , Terpenos/química , Família Multigênica
15.
Phytochemistry ; 224: 114149, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763314

RESUMO

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.


Assuntos
Aspergillus , Chalconas , Dimetilaliltranstransferase , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/antagonistas & inibidores , Chalconas/química , Chalconas/farmacologia , Chalconas/metabolismo , Aspergillus/enzimologia , Aspergillus/química , Estrutura Molecular , Prenilação , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Relação Dose-Resposta a Droga
16.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38818856

RESUMO

Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.


Assuntos
Prenilação de Proteína , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Sequência de Aminoácidos , Dimetilaliltranstransferase/metabolismo , Proteínas Virais/metabolismo , Alquil e Aril Transferases/metabolismo
17.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607994

RESUMO

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Assuntos
Dicetopiperazinas , Dimetilaliltranstransferase , Prenilação , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Estrutura Molecular , Família Multigênica
19.
Plant Physiol Biochem ; 210: 108596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579541

RESUMO

The peanut plant is one of the most economically important crops around the world. Abiotic stress, such as drought, causes over five hundred million dollars in losses in peanut production per year. Peanuts are known to produce prenylated stilbenoids to counteract biotic stress. However, their role in abiotic stress tolerance has not been elucidated. To address this issue, hairy roots with the capacity to produce prenylated stilbenoids were established. An RNA-interference (RNAi) molecular construct targeting the stilbenoid-specific prenyltransferase AhR4DT-1 was designed and expressed via Agrobacterium rhizogenes-mediated transformation in hairy roots of peanut cultivar Georgia Green. Two transgenic hairy roots with the RNAi molecular construct were established, and the downregulation of AhR4DT-1 was validated using reverse transcriptase quantitative PCR. To determine the efficacy of the RNAi-approach in modifying the levels of prenylated stilbenoids, the hairy roots were co-treated with methyl jasmonate, hydrogen peroxide, cyclodextrin, and magnesium chloride to induce the production of stilbenoids and then the stilbenoids were analyzed in extracts of the culture medium. Highly reduced levels of prenylated stilbenoids were observed in the RNAi hairy roots. Furthermore, the hairy roots were evaluated in a polyethylene glycol (PEG) assay to assess the role of prenylated stilbenoids on water-deficit stress. Upon PEG treatment, stilbenoids were induced and secreted into the culture medium of RNAi and wild-type hairy roots. Additionally, the biomass of the RNAi hairy roots decreased by a higher amount as compared to the wild-type hairy roots suggesting that prenylated stilbenoids might play a role against water-deficit stress.


Assuntos
Arachis , Biomassa , Raízes de Plantas , Estilbenos , Arachis/genética , Arachis/metabolismo , Arachis/enzimologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Estilbenos/metabolismo , Regulação para Baixo , Plantas Geneticamente Modificadas , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Desidratação , Secas , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Interferência de RNA , Oxilipinas/metabolismo , Água/metabolismo , Prenilação
20.
J Agric Food Chem ; 72(14): 8018-8026, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557039

RESUMO

Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin (1) by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin. Mutants AnaPT_F265D, AnaPT_F265G, AnaPT_F265P, AnaPT_F265C, and AnaPT_F265Y were discovered to generally increase prenylation activity toward 1. AnaPT_F265G catalyzes the O-geranylation selectively at the C-2' hydroxyl group, which involves an intramolecular hydrogen bond with the carbonyl group of 1. Seven products, 1D5, 1D7-1D9, 1G2, 1G4, and 1F2, have not been reported prior to this study. Twelve compounds, 1D3-1D9, 1G1-1G3, and 1F1-1F2, exhibited potential inhibitory effects on α-glucosidase with IC50 values ranging from 11.45 ± 0.87 to 193.80 ± 6.52 µg/mL. Among them, 1G1 with an IC50 value of 11.45 ± 0.87 µg/mL was the most potential α-glucosidase inhibitor, which is about 30 times stronger than the positive control acarbose with an IC50 value of 346.63 ± 15.65 µg/mL.


Assuntos
Dimetilaliltranstransferase , Floretina , Floretina/farmacologia , Indóis/química , Carbono , Catálise , Prenilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA