Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.504
Filtrar
1.
Nat Commun ; 15(1): 7735, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232002

RESUMO

Breastfeeding provides many health benefits, but its impact on respiratory health remains unclear. This study addresses the complex and dynamic nature of the mother-milk-infant triad by investigating maternal genomic factors regulating human milk oligosaccharides (HMOs), and their associations with respiratory health among human milk-fed infants. Nineteen HMOs are quantified from 980 mothers of the CHILD Cohort Study. Genome-wide association studies identify HMO-associated loci on chromosome 19p13.3 and 19q13.33 (lowest P = 2.4e-118), spanning several fucosyltransferase (FUT) genes. We identify novel associations on chromosome 3q27.3 for 6'-sialyllactose (P = 2.2e-9) in the sialyltransferase (ST6GAL1) gene. These, plus additional associations on chromosomes 7q21.32, 7q31.32 and 13q33.3, are replicated in the independent INSPIRE Cohort. Moreover, gene-environment interaction analyses suggest that fucosylated HMOs may modulate overall risk of recurrent wheeze among preschoolers with variable genetic risk scores (P < 0.01). Thus, we report novel genetic factors associated with HMOs, some of which may protect the respiratory health of children.


Assuntos
Estudo de Associação Genômica Ampla , Leite Humano , Oligossacarídeos , Sialiltransferases , Humanos , Leite Humano/química , Leite Humano/metabolismo , Feminino , Oligossacarídeos/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Lactente , Masculino , Pré-Escolar , Fucosiltransferases/genética , Aleitamento Materno , Sons Respiratórios/genética , Interação Gene-Ambiente , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Coortes , Mães , Criança , Cromossomos Humanos Par 3/genética , Lactose/análogos & derivados
2.
Wiad Lek ; 77(7): 1377-1386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39241136

RESUMO

OBJECTIVE: Aim: To find any association between specific ABO blood groups and FUT2 secretory status and COVID-19 in a sample of Iraqi dentists. PATIENTS AND METHODS: Materials and Methods: For each participant, a questionnaire including demography, COVID-19 status, blood grouping, and RH factor, with chemo-sensitive symptoms was recorded. The saliva samples were collected and DNA was extracted from leukocytes. Sequencing of molecular detection of the FUT2 gene by real-time PCR and the data was done, whilst drawing the phylogenetic tree. RESULTS: Results: Out of 133, most of the dentists were female 61%, most were just under 35 years of age. The most participants in this study were predominantly with blood group O (40%), followed by B, A, and AB, with (90%) of them were RH+. All blood grouping and RH factor were high significantly associated with COVID-19 infection and its frequency (p<0.001). A significant association between smell dysfunction and infected blood group A and RH+ (p =0.044, 0.038) while taste dysfunction was negatively and significantly correlated with AB group (r=-0.73; p=0.008). The FUT2 secretor showed a significant association with COVID-19 infection and frequency. The majority of COVID-19-infected participants experienced a significant loss of both smell and taste with fast recovery within 2 weeks. CONCLUSION: Conclusions: The COVID-19 infection susceptibility and reinfection are associated with FUT2 secretory status and greatly associated to olfactory and gustatory sense loss.


Assuntos
COVID-19 , Odontólogos , Fucosiltransferases , Galactosídeo 2-alfa-L-Fucosiltransferase , SARS-CoV-2 , Humanos , Feminino , COVID-19/genética , COVID-19/epidemiologia , Fucosiltransferases/genética , Masculino , Adulto , Iraque/epidemiologia , Odontólogos/estatística & dados numéricos , SARS-CoV-2/genética , Sistema ABO de Grupos Sanguíneos/genética , Pessoa de Meia-Idade , Saliva/virologia
3.
Braz J Biol ; 84: e278681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258719

RESUMO

Fucosyltransferases are enzymes that transfer L-fucose residues from a donor substrate to target molecules. These enzymes are encoded by genes known as FUTs (FUT1 to FUT-11), along with POFUT1 and 2. Changes in FUT expression have a significant role in cancer development and malignancy. This review delves into the biochemistry and biological functions of FUTs and their contributions to cancer. Broadly, FUTs play roles in cancer tumorigenesis, survival, and metastasis. Interactions between fucosylated glycans and various molecules associated with cancer, such as E-selectins and the epidermal growth factor receptor (EGFR), offer alternative pathways for cancer development. The review also highlights FUTs as potential biomarkers for cancer prognosis and diagnosis, along with their application as targets for therapy.


Assuntos
Fucosiltransferases , Neoplasias , Fucosiltransferases/genética , Humanos , Neoplasias/genética , Neoplasias/enzimologia , Biomarcadores Tumorais/genética , Animais
4.
Helicobacter ; 29(4): e13122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108208

RESUMO

BACKGROUND: Helicobacter pylori infection is a significant pathogen in gastrointestinal diseases. Previous studies have identified single-nucleotide polymorphisms (SNPs) are factors associated with H. pylori infection. Notably, Leb and Sialyl-Lex antigens, regulated by the FUT3 and FUT6 genes, play a crucial role in H. pylori infection. This study aimed to investigate the correlation between FUT3 and FUT6 gene polymorphisms and H. pylori infection in the Han population of northern China. MATERIALS AND METHODS: An immunoturbidimetric assay was employed to detect H. pylori infection, categorizing subjects into infected and noninfected groups. Gene variants were identified through sequencing. Finally, FUT3 and FUT6 gene polymorphisms were analyzed to assess their association with H. pylori infection. RESULTS: The frequency of the T allele (rs778805) and the G allele (rs61147939) in the infection group was significantly higher than that in the noninfection group (63.4% vs. 55.1%, p = 0.045; 55.2% vs. 47.0%, p = 0.042, respectively). In the infection group, the frequency of the AA genotype (rs3745635) in the recessive model, the TT genotype (rs778805) in the recessive model, and the GG genotype (rs61147939) in the recessive model were significantly higher than the noninfection group (5.8% vs. 2.3%, p = 0.042; 41.9% vs. 29.3%, p = 0.022; 34.9% vs. 20.5%, p = 0.0068, respectively). The frequency of the A13 haplotype and the A13/A13 diplotype of the FUT6 gene was significantly higher in the infection group than in the noninfection group (55.56% vs. 46.32%, p = 0.019; 34.94% vs. 20.30%, p = 0.045, respectively). The rs778805-rs17855739-rs28362459-rs3745635 combination was identified as the best interaction model (p < 0.05). CONCLUSIONS: This study suggests that FUT3 and FUT6 gene polymorphisms are significantly associated with H. pylori infection in the Han Chinese from northern China.


Assuntos
Fucosiltransferases , Predisposição Genética para Doença , Infecções por Helicobacter , Helicobacter pylori , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , China/epidemiologia , Fucosiltransferases/genética , Frequência do Gene , Genótipo , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética
5.
J Med Virol ; 96(8): e29848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105389

RESUMO

Fucosyltransferase 2 (FUT2) gene, which regulates the formation of Histoblood group antigens, could determine the human susceptibility to norovirus. This study aimed to investigate the correlation between FUT2 gene polymorphism and susceptibility to norovirus gastroenteritis in Han Chinese population. A total of 212 children patients with acute gastroenteritis were enrolled. The stool and serum samples were collected respectively. We used the qPCR method to detect the norovirus infection status from the stool samples, and we used serum samples to detect the FUT2 polymorphism. A case-control study was conducted to investigate the three common SNPs polymorphisms (rs281377, rs1047781, and rs601338) of FUT2 gene with sanger sequencing method. The results indicated that the homozygous genotypes and mutant allele of rs1047781 (A385T) would downgrade the risk of norovirus gastroenteritis in Chinese Han population (AA vs. TT, odds ratio [OR] = 0.098, 95% confidence interval [CI] = 0.026-0.370, p = 0.001; AA + AT vs. TT, OR = 0.118. 95% CI = 0.033-0.424, p = 0.001; A vs. T, OR = 0.528, 95% CI = 0.351-0.974, p = 0.002). There were no significant difference of rs281377 (C357T) and rs601338 (G428A) polymorphisms between norovirus positive and norovirus negative groups (p > 0.05). The haplotype T-T-G was less susceptible (OR = 0.49, 95% CI = 0.31-0.79, p = 0.0034) to norovirus infection compared to other haplotypes. Our results investigated the relationship between the FUT2 gene polymorphisms and norovirus susceptibility in Han Chinese population, and firstly revealed that children with homozygous genotypes and mutant alleles of FUT2 rs1047781 (A385T) were less susceptible to norovirus gastroenteritis.


Assuntos
Povo Asiático , Infecções por Caliciviridae , Fucosiltransferases , Galactosídeo 2-alfa-L-Fucosiltransferase , Gastroenterite , Predisposição Genética para Doença , Genótipo , Norovirus , Polimorfismo de Nucleotídeo Único , Humanos , Fucosiltransferases/genética , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/epidemiologia , Feminino , Masculino , Gastroenterite/virologia , Gastroenterite/genética , Estudos de Casos e Controles , Pré-Escolar , Norovirus/genética , Povo Asiático/genética , Lactente , China/epidemiologia , Criança , Fezes/virologia , Alelos , Haplótipos , População do Leste Asiático
6.
Glycobiology ; 34(8)2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976017

RESUMO

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Assuntos
Fibroblastos , Fucose , Fucosiltransferases , Receptor Notch1 , Humanos , Fibroblastos/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Receptor Notch1/metabolismo , Receptor Notch1/química , Família de Proteínas EGF/metabolismo
7.
Stem Cells ; 42(9): 809-820, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982795

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.


Assuntos
Células Epiteliais Alveolares , Autofagia , Células-Tronco Mesenquimais , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco Mesenquimais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bleomicina/toxicidade , Camundongos Knockout , Fucose/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética
8.
J Biol Chem ; 300(8): 107558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002669

RESUMO

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.


Assuntos
Fucose , Fucosiltransferases , Imunoglobulina G , Camundongos Knockout , Receptores de IgG , Animais , Fucose/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Camundongos , Receptores de IgG/metabolismo , Receptores de IgG/genética , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/imunologia , Receptores Fc , Antígenos de Histocompatibilidade Classe I
9.
Front Immunol ; 15: 1365430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840912

RESUMO

The presence of the blood group H2 antigen on the membrane of red blood cells determines blood type O in individuals and this H2 antigen serves as a precursor to the A and B antigens expressed in blood types A and B, respectively. However, the specific involvement of ABH antigens in skin diseases is unknown. Therefore, we aim to investigate the expression of ABH antigens in skin tissue of patients with atopic dermatitis (AD) and MC903-induced AD-like mice. We demonstrated that the expression of ABH antigen is primarily located in the granular and horny layers of the skin in healthy control individuals. However, in patients with AD, the expression of the ABH antigen was absent or diminished in these layers, while the H2 antigen expression increased in the spinous layers of the affected skin lesions. Then, we investigated the biological function of blood group H antigen mediated by fucosyltransferase 1 (Fut1) in the skin, utilizing an AD mouse model induced by MC903 in wild-type (WT) and Fut1-knockout mice. After the application of MC903, Fut1-deficient mice, with no H2 antigen expression on their skin, exhibited more severe clinical signs, increased ear swelling, and elevated serum IgE levels compared with those of WT mice. Additionally, the MC903-induced thickening of both the epidermis and dermis was more pronounced in Fut1-deficient mice than that in WT mice. Furthermore, Fut1-deficient mice showed a significantly higher production of interleukin-4 (IL-4) and IL-6 in skin lesions compared with that of their WT counterparts. The expression of chemokines, particularly Ccl2 and Ccl8, was notably higher in Fut1-deficient mice compared with those of WT mice. The infiltration of CD4+ T cells, eosinophils, and mast cells into the lesional skin was significantly elevated in Fut1-deficient mice compared with that in WT mice. These findings demonstrate the protective role of H2 antigen expression against AD-like inflammation and highlight its potential therapeutic impact on AD through the regulation of blood group antigens.


Assuntos
Dermatite Atópica , Fucosiltransferases , Galactosídeo 2-alfa-L-Fucosiltransferase , Camundongos Knockout , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Epiderme/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Camundongos Endogâmicos C57BL
10.
ACS Synth Biol ; 13(6): 1866-1878, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38836566

RESUMO

3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.


Assuntos
Escherichia coli , Fucosiltransferases , Engenharia Metabólica , Trissacarídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Trissacarídeos/metabolismo , Trissacarídeos/biossíntese , Engenharia Metabólica/métodos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Lactose/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Fermentação , Oligossacarídeos
11.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917011

RESUMO

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Assuntos
Cricetulus , Fucose , Fucose/metabolismo , Animais , Células CHO , Glicosilação , Humanos , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Fucosiltransferases/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos
12.
Methods Mol Biol ; 2810: 249-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926284

RESUMO

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , Fucose , Fucosiltransferases , Edição de Genes , Células CHO , Animais , Edição de Genes/métodos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Fucose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cricetinae , Humanos
13.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908854

RESUMO

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Assuntos
Antígeno B7-H1 , Fucosiltransferases , Imunoterapia , Neoplasias Hepáticas , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Camundongos , Animais , Antígeno B7-H1/metabolismo , Imunoterapia/métodos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Evasão Tumoral , Microambiente Tumoral , Evasão da Resposta Imune , Linhagem Celular Tumoral
14.
J Microbiol Biotechnol ; 34(7): 1511-1521, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38934781

RESUMO

This study aimed to determine the function of LINC00511 in Nod-Like Receptor Pyrin Domain 3 inflammasome-mediated chondrocyte pyroptosis via the regulation of miR-9-5p and FUT 1. Chondrocyte inflammatory injury was induced by treating chondrocytes with LPS. Afterwards, the levels of IL-1ß and IL-18, the expression of NLRP3, ASC, Caspase-1, and GSDMD, cell viability, and LDH activity in chondrocytes were assessed. LINC00511 expression in LPS-treated chondrocytes was detected, and LINC00511 was subsequently silenced to analyse its role in chondrocyte pyroptosis. The subcellular localization of LINC00511 was predicted and verified. Furthermore, the binding relationships between LINC00511 and miR-9-5p and between miR-9-5p and FUT1 were validated. LINC00511 regulated NLRP3 inflammasome-mediated chondrocyte pyroptosis through the miR-9-5p/FUT1 axis. LPS-treated ATDC5 cells exhibited elevated levels of inflammatory injury; increased levels of NLRP3, ASC, Caspase-1, and GSDMD; reduced cell viability; increased LDH activity; and increased LINC00511 expression, while LINC00511 silencing inhibited the NLRP3 inflammasome to restrict LPS-induced chondrocyte pyroptosis. Next, LINC00511 sponged miR-9-5p, which targeted FUT1. Silencing LINC00511 suppressed FUT1 by upregulating miR-9-5p. Additionally, downregulation of miR-9-5p or overexpression of FUT1 neutralized the suppressive effect of LINC00511 knockdown on LPS-induced chondrocyte pyroptosis. Silencing LINC00511 inhibited the NLRP3 inflammasome to quench Caspase-1-dependent chondrocyte pyroptosis in OA by promoting miR-9-5p and downregulating FUT1.


Assuntos
Condrócitos , Fucosiltransferases , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Condrócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos , Humanos , Linhagem Celular , Animais , Camundongos , Sobrevivência Celular , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo , Interleucina-18/genética , Caspase 1/metabolismo , Caspase 1/genética
15.
J Agric Food Chem ; 72(25): 14191-14198, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38878091

RESUMO

3-Fucosyllactose (3-FL), an important fucosylated human milk oligosaccharide in breast milk, offers numerous health benefits to infants. Previously, we metabolically engineered Escherichia coli BL21(DE3) for the in vivo biosynthesis of 3-FL. In this study, we initially optimized culture conditions to double 3-FL production. Competing pathway genes involved in in vivo guanosine 5'-diphosphate-fucose biosynthesis were subsequently inactivated to redirect fluxes toward 3-FL biosynthesis. Next, three promising transporters were evaluated using plasmid-based or chromosomally integrated expression to maximize extracellular 3-FL production. Additionally, through analysis of α1,3-fucosyltransferase (FutM2) structure, we identified Q126 residues as a highly mutable residue in the active site. After site-saturation mutation, the best-performing mutant, FutM2-Q126A, was obtained. Structural analysis and molecular dynamics simulations revealed that small residue replacement positively influenced helical structure generation. Finally, the best strain BD3-A produced 6.91 and 52.1 g/L of 3-FL in a shake-flask and fed-batch cultivations, respectively, highlighting its potential for large-scale industrial applications.


Assuntos
Escherichia coli , Fucosiltransferases , Engenharia Metabólica , Trissacarídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Trissacarídeos/metabolismo , Trissacarídeos/biossíntese , Trissacarídeos/química , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Humanos , Oligossacarídeos
16.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928269

RESUMO

The FUT2 gene encodes an enzyme called α-1,2-fucosyltransferase, which is involved in the formation of blood group antigens AB0(H) and is also involved in the processes of vitamin B12 absorption and its transport between cells. FUT2 gene polymorphisms are associated with vitamin B12 levels in the body. Vitamin B12 deficiency associated with hyperhomocysteinemia is a major risk factor for cardiovascular diseases (CVDs), which are one of the main causes of death in patients after kidney transplantation. The aim of our study was to determine the impact of the rs602662 (G>A) polymorphism of the FUT2 gene on the functionality of transplanted kidneys and the risk of CVD in patients after kidney transplantation. The study included 402 patients treated with immunosuppression (183 patients taking cyclosporine (CsA) and 219 patients taking tacrolimus (TAC)). The analysis of the FUT2 rs602662 (G>A) polymorphism was performed using real-time PCR. Patients with CsA were more likely to be underweight (1.64% vs. 0.91%) and obese (27.87% vs. 15.98%), while those taking TAC were more likely to be of normal weight (39.27%) or overweight (43.84%). No statistically significant differences were observed comparing the mean blood pressure, both systolic and diastolic. The renal profile showed a higher median urea nitrogen concentration in patients with CsA (26.45 mg/dL (20.60-35.40) vs. 22.95 mg/dL (17.60-33.30), p = 0.004). The observed frequency of rs602662 alleles of the FUT2 gene was similar in the analyzed groups. The A allele was present in 43.7% of patients with CsA and 41.1% of those taking TAC (OR = 0.898; 95% CI: 0.678-1.189; p = 0.453). In the group with CsA, the GG genotype was present in 32.2% of patients, the GA in 48.1% and the AA in 19.7%. A similar distribution was obtained in the TAC group: GG-33.8%, GA-50.2%, and AA-16.0%. An association of genotypes containing the G allele with a higher incidence of hypertension was observed. The G allele was present in 65% of people with hypertension and in 56% of patients with normal blood pressure (p = 0.036). Moreover, the evaluation of the renal parameters showed no effect of the FUT2 polymorphism on the risk of organ rejection because the levels of creatinine, eGFR, potassium, and urea nitrogen were prognostic of successful transplantation. Our results suggest that the rs6022662 FUT2 polymorphism may influence the risk of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Fucosiltransferases , Galactosídeo 2-alfa-L-Fucosiltransferase , Transplante de Rim , Polimorfismo de Nucleotídeo Único , Humanos , Fucosiltransferases/genética , Transplante de Rim/efeitos adversos , Masculino , Feminino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/etiologia , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Predisposição Genética para Doença , Genótipo , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Ciclosporina/uso terapêutico , Ciclosporina/efeitos adversos , Tacrolimo/efeitos adversos , Tacrolimo/uso terapêutico
17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38896583

RESUMO

Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.


Assuntos
Antibacterianos , Fucosiltransferases , Galactosídeo 2-alfa-L-Fucosiltransferase , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Probióticos/administração & dosagem , Antibacterianos/farmacologia , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo , Polissacarídeos/metabolismo , Interações entre Hospedeiro e Microrganismos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bifidobacterium/genética , Bifidobacterium/metabolismo
19.
Int Immunopharmacol ; 137: 112512, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897123

RESUMO

OBJECTIVE: This study aims to disclose how loss of fucosyltransferase 2 (Fut2) impacts intestinal inflammation through cGAS-STING pathway that is closely associated with gut microbiota, and which microbial metabolite improves colitis in Fut2 deficiency. METHODS: Chronic colitis was induced in intestinal epithelial Fut2 knock out mice (Fut2△IEC), whose intestinal inflammation and activity of cGAS-STING pathway were evaluated. 16S rRNA sequencing and metabolomics were performed using intestinal samples. 2-oxindole was used to treat RAW264.7 cells and Fut2△IEC mice with colitis (Fut2△IEC-DSS) to investigate the effect of 2-oxindole on cGAS-STING response and intestinal inflammation. RESULTS: Fut2 loss exacerbated chronic colitis in mice, manifested by declined body weight, reduced colon length, increased disease activity index (DAI) and more colon injury in Fut2△IEC-DSS mice compared with WT-DSS (wild type mice with colitis). Lack of Fut2 promoted activation of cGAS-STING pathway. Fut2 deficiency had a primary impact on colonic microbiota, as shown by alteration of microbial diversity and structure, as well as decreased Lactobacillus. Metabolic structure and tryptophan metabolism in colonic luminal microbiota were also influenced by Fut2 loss. Fut2 deficiency also led to decreased levels of aryl hydrocarbon receptor (AHR) and its ligand 2-oxindole derived from tryptophan metabolism. 2-oxindole compromised cGAS-STING response through activating AHR in macrophages, and protected against intestinal inflammation and overactive cGAS-STING pathway in Fut2△IEC-DSS mice. CONCLUSION: Fut2 deficiency promotes cGAS-STING pathway through suppressing 2-oxindole-AHR axis, ultimately facilitating the susceptibility to chronic colitis.


Assuntos
Colite , Fucosiltransferases , Microbioma Gastrointestinal , Proteínas de Membrana , Camundongos Knockout , Nucleotidiltransferases , Oxindóis , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Doença Crônica , Colite/induzido quimicamente , Colite/imunologia , Colo/patologia , Colo/imunologia , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Fucosiltransferases/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Células RAW 264.7 , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética
20.
Biomolecules ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786002

RESUMO

The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.


Assuntos
Diarreia , Animais , Suínos/genética , China , Diarreia/genética , Diarreia/veterinária , Fucosiltransferases/genética , Proteínas de Transporte de Cátions/genética , Cruzamento , Galactosídeo 2-alfa-L-Fucosiltransferase , Mucina-4/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA