Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.586
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273214

RESUMO

Neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, is caused by mutations in the NF1 gene, which encodes the GTPase-activating protein neurofibromin. The pathogenesis of the tumor progression of benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. Here, we found that interferon-induced transmembrane protein 1 (IFITM1) was downregulated in MPNST tissues compared to those in PN tissues from patients with NF1. Overexpression of IFITM1 in NF1-associated MPNST cells resulted in a significant decrease in Ras activation (GTP-Ras) and downstream extracellular regulatory kinase 1/2 (ERK1/2) phosphorylation, whereas downregulation of IFITM1 via treatment with small interfering RNA in normal Schwann cells had the opposite result, indicating that expression levels of IFITM1 are closely associated with tumor progression in NF1. Treatment of MPNST cells with interferon-gamma (IFN-γ) significantly augmented the expression of IFITM1, thereby leading to a decrease in Ras and ERK1/2 activation. Despite the small number of patient samples, these findings may potentially provide a new target for chemotherapy in patients with NF1-associated MPNSTs. In xenograft mice injected with MPNST cells, IFN-γ treatment successfully suppressed tumor progression with increased IFITM1 expression and decreased Ras and ERK1/2 activation in tumor tissues. Collectively, these results suggest that IFITM1 is closely involved in MPNST pathogenesis and that IFN-γ is a good candidate for the therapeutic treatment of MPNSTs in NF1.


Assuntos
Antígenos de Diferenciação , Neoplasias de Bainha Neural , Neurofibromatose 1 , Humanos , Animais , Neurofibromatose 1/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromatose 1/complicações , Camundongos , Neoplasias de Bainha Neural/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Linhagem Celular Tumoral , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Proteínas ras/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Adulto
2.
Fly (Austin) ; 18(1): 2398300, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39239739

RESUMO

Talaromycosis, caused by Talaromyces marneffei (T. marneffei, formerly known as Penicillium marneffei), is an opportunistic invasive mycosis endemic in tropical and subtropical areas of Asia with high mortality rate. Despite various infection models established to study the immunological interaction between T. marneffei and the host, the pathogenicity of this fungus is not yet fully understood. So far, Drosophila melanogaster, a well-established genetic model organism to study innate immunity, has not been used in related research on T. marneffei. In this study, we provide the initial characterization of a systemic infection model of T. marneffei in the D. melanogaster host. Survival curves and fungal loads were tested as well as Toll pathway activation was quantified by RT-qPCR of several antimicrobial peptide (AMP) genes including Drosomycin, Metchnikowin, and Bomanin Short 1. We discovered that whereas most wild-type flies were able to overcome the infection, MyD88 or Toll mutant flies failed to prevent fungal dissemination and proliferation and ultimately succumbed to this challenge. Unexpectedly, the induction of classical Toll pathway activation readouts, Drosomycin and Bomanin Short 1, by live or killed T. marneffei was quite limited in wild-type flies, suggesting that the fungus largely escapes detection by the systemic immune system. This unusual situation of a poor systemic activation of the Toll pathway and a strong susceptibility phenotype of MyD88/Toll might be accounted for by a requirement for this host defence in only specific tissues, a hypothesis that remains to be rigorously tested.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Fator 88 de Diferenciação Mieloide , Talaromyces , Receptores Toll-Like , Animais , Talaromyces/genética , Talaromyces/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Drosophila melanogaster/microbiologia , Drosophila melanogaster/imunologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Micoses/imunologia , Micoses/microbiologia , Imunidade Inata , Transdução de Sinais , Antígenos de Diferenciação , Receptores Imunológicos , Proteínas Adaptadoras de Transdução de Sinal
3.
Acta Odontol Scand ; 83: 486-492, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258954

RESUMO

Signal regulatory protein alpha (SIRPα) is mainly expressed by cells of myeloid origin. This membrane glycoprotein is shown to be involved in regulation of different inflammatory conditions, such as colitis and arthritis. However, SIRPα has not been investigated in relationship to periodontitis, an inflammatory condition affecting the tooth supporting tissues. We aim to investigate if resident cells in the periodontium express SIRPα and whether a possible expression is affected by inflammatory conditions. Primary human keratinocytes, fibroblasts, periodontal ligament cells, and osteoblasts were cultured with or without the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) or interleukin-1-beta (IL-1ß). All different periodontal cell types showed a basal mRNA expression of SIRPα. Pro-inflammatory cytokines induced a 2-3-fold significant increase in SIRPα expression in both cultured human gingival fibroblasts and osteoblasts but neither in keratinocytes nor in periodontal ligament cells. Tissue sections from human gingival tissue biopsies were histochemically stained for SIRPα. Epithelial keratinocytes and gingival fibroblasts stained positive in sections from periodontally healthy as well as in sections from periodontitis. In periodontitis sections, infiltrating leukocytes stained positive for SIRPα. We highlight our finding that oral keratinocytes, gingival fibroblasts, and periodontal ligament cells do express SIRPα, as this has not been presented before. The fact that inflammatory stimulation of gingival fibroblasts increased the expression of SIRPα, while an increased expression by gingival fibroblasts in periodontitis tissue in situ could not be detected, is indeed contradictory.


Assuntos
Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Células Cultivadas , Periodonto/metabolismo , Periodonto/patologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Antígenos de Diferenciação/metabolismo , Queratinócitos/metabolismo , Periodontite/metabolismo , Fibroblastos/metabolismo
4.
Placenta ; 155: 88-99, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39173312

RESUMO

INTRODUCTION: Embryo implantation is a tightly regulated process, critical for a successful pregnancy. After attachment of the blastocyst to the surface epithelium of the endometrium trophoblast migrate from the trophectoderm and invade into the stromal component of endometrium. Alterations on either process will lead to implantation failure or miscarriage. Volatile organic compounds (VOCs) such as benzene induce pregnancy complications, including preterm birth and miscarriages. The mechanism of this effect is unknown. The objective of this study was to elucidate the impact of benzene metabolite, Hydroquinone, on trophoblast function. We tested the hypothesis that Hydroquinone activates the Aryl hydrocarbon receptor (AhR) pathway modulating trophoblast migration and invasion. METHODS: First-trimester trophoblast cells (Sw.71) were treated with hydroquinone (6 and 25 µM). Trophoblast migration and invasion was evaluated using a 3D invasion/migration model. Gene expression was quantified by q-PCR and Western blot analysis. RESULTS: Hydroquinone impairs trophoblast migration and invasion. This loss is associated with the activation of the AhR pathway which reduced the expression of Twist1and IFITM1. IFITM1 overexpression can rescue impaired trophoblast migration. DISCUSSION: Our study highlights that hydroquinone treatment induces the activation of the AhR pathway in trophoblast cells, which impairs trophoblast invasion and migration. We postulate that activation of the AhR pathway in trophoblast suppress Twist1 and a subsequent IFITM1. Thus, the AhR-Twist1-IFITM1 axis represent a critical pathway involved in the regulation of trophoblast migration and it is sensitive to benzene exposure. These findings provide crucial insights into the molecular mechanisms underlying pregnancy complications induced by air pollution.


Assuntos
Movimento Celular , Hidroquinonas , Receptores de Hidrocarboneto Arílico , Trofoblastos , Proteína 1 Relacionada a Twist , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Hidroquinonas/farmacologia , Movimento Celular/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Feminino , Gravidez , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Antígenos de Diferenciação/metabolismo , Linhagem Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Nucleares/metabolismo
5.
Stem Cell Reports ; 19(9): 1255-1263, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151431

RESUMO

Human immune system (HIS) mice generated using human CD34+ hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34+ cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.


Assuntos
Antígenos CD34 , Animais , Humanos , Antígenos CD34/metabolismo , Ratos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/genética , Sistema Imunitário/metabolismo , Citocinas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos , Antígenos de Diferenciação
6.
ACS Nano ; 18(33): 22298-22315, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39117621

RESUMO

A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and N-acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors. Conjugation of the SIRPα IgV domain protein to siRNAs enables tumor dash through CD47-mediated erythrocyte piggyback, primarily blocking the physical interaction between CD47 on cancer cells and SIRPα on phagocytes. After internalization of the vS-siCD47 conjugates within cancer cells, the detached free-standing anti-CD47 siRNAs subsequently attack CD47 through the RNAi mechanism. The dual-action approach of the vS-siCD47 conjugate effectively overcomes the "don't eat me" barrier and stimulates phagocyte-mediated tumor destruction, demonstrating a highly selective and potent CD47-blocking immunotherapy. This delivery strategy, employing IgV domain protein-siRNA conjugates with a dual mode of target suppression, holds promise for expanding RNAi applications beyond hepatocytes and advancing RNAi-based cancer immunotherapies for solid tumors.


Assuntos
Antígeno CD47 , RNA Interferente Pequeno , Receptores Imunológicos , Antígeno CD47/metabolismo , Antígeno CD47/química , Humanos , RNA Interferente Pequeno/química , Animais , Camundongos , Receptores Imunológicos/metabolismo , Neoplasias/terapia , Neoplasias/genética , Neoplasias/patologia , Antígenos de Diferenciação , Linhagem Celular Tumoral
7.
Science ; 385(6709): eadp2065, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116219

RESUMO

Hematopoietic stem cells (HSCs) are routinely mobilized from the bone marrow (BM) to the blood circulation for clinical transplantation. However, the precise mechanisms by which individual stem cells exit the marrow are not understood. This study identified cell-extrinsic and molecular determinants of a mobilizable pool of blood-forming stem cells. We found that a subset of HSCs displays macrophage-associated markers on their cell surface. Although fully functional, these HSCs are selectively niche-retained as opposed to stem cells lacking macrophage markers, which exit the BM upon forced mobilization. Macrophage markers on HSCs could be acquired through direct transfer by trogocytosis, regulated by receptor tyrosine-protein kinase C-Kit (CD117), from BM-resident macrophages in mouse and human settings. Our study provides proof of concept that adult stem cells utilize trogocytosis to rapidly establish and activate function-modulating molecular mechanisms.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas c-kit , Trogocitose , Animais , Humanos , Camundongos , Células-Tronco Adultas/fisiologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Nicho de Células-Tronco , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Antígenos de Diferenciação
8.
Front Biosci (Landmark Ed) ; 29(8): 283, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39206889

RESUMO

BACKGROUND: Humankind have been struggling with colorectal cancer (CRC) for long period with its rapid progression and invasive metastasis. By hyperactivating IL-6/STAT3 signaling, CRC facilitates the capacity of angiogenesis to plunder massive nutrients and develops gradually under harsh condition. METHODS: The Cancer Genome Atlas database was analyzed for acquiring interferon-γ inducible protein 10 (IFITM10) expression levels and their correlation with clinical outcomes. The cell angiogenic ability were assessed by Cell Counting Kit-8 (CCK-8) and tube formation assay. Immunofluorescence, Western blot, and enzyme-linked immunosorbent assay (ELISA) assay were using to assess potential mechanism. RESULTS: In our study, we find that IFITM10 is upregulated in CRC and is positively related with tumor angiogenesis. We also find that IFITM inhibition decreased STAT3 phosphorylation level and IFITM10-mediated angiogenesis depends on STAT3 activation. Furthermore, our data suggests that IFITM10 may be a key prognostic biomarker in colorectal cancer. CONCLUSION: Together, our study suggests that IFITM10 enhance angiogenesis through STAT3 activation during CRC progression, which highlighting its potency as a therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Neovascularização Patológica , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/irrigação sanguínea , Linhagem Celular Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fosforilação , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Angiogênese , Antígenos de Diferenciação
9.
J Adv Res ; 63: 129-158, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39167629

RESUMO

BACKGROUND: Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW: This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.


Assuntos
Antígeno CD47 , Imunoterapia , Neoplasias , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Animais , Transdução de Sinais , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Imunidade Inata , Fagocitose
10.
Cancer Genomics Proteomics ; 21(5): 511-522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39191497

RESUMO

BACKGROUND/AIM: Interferon-induced trans-membrane protein 1 (IFITM1) is known to be involved in breast cancer progression. We aimed to investigate its role in estrogen receptor (ER)-positive breast cancer cells with wild-type p53 and tamoxifen-resistant breast cancer cells. MATERIALS AND METHODS: The ER-positive breast cancer cell lines, MCF-7 with wild-type p53 and T47D with mutant p53, were used. We established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. RESULTS: IFITM1 inhibition in MCF-7 cells significantly decreased cell growth and migration. MCF-7 cells with suppression of IFITM1 using siRNA or ruxolitinib showed reduced cell viability after tamoxifen treatment compared with that in the control MCF-7 cells. Unexpectedly, mRNA and protein levels of IFITM1 were decreased in TamR cells compared with those in MCF-7 cells. TamR cells with suppression of IFITM1 using siRNA or ruxolitinib showed no change in cell viability after treatment with tamoxifen. P53 knockdown using siRNA reduced the mRNA levels of IRF9 and increased mRNA and protein levels of SOCS3 in MCF-7 cells, suggesting that loss or mutation of p53 can affect the induction of IFITM1 via the JAK/STAT signaling pathway in breast cancer. Furthermore, MCF-7 cells with p53 knockdown using siRNA showed no decrease in cell viability after tamoxifen treatment or IFITM1 inhibition, indicating that p53 status may be important for cell death after tamoxifen treatment or IFITM1 inhibition. CONCLUSION: IFITM1 inhibition may enhance the sensitivity to tamoxifen based on p53-dependent enhancement of IFN signaling in wild-type p53, ER-positive breast cancer cells.


Assuntos
Antígenos de Diferenciação , Neoplasias da Mama , Proliferação de Células , Receptores de Estrogênio , Tamoxifeno , Proteína Supressora de Tumor p53 , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Feminino , Proliferação de Células/efeitos dos fármacos , Antígenos de Diferenciação/metabolismo , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Células MCF-7 , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
11.
J Pharm Biomed Anal ; 251: 116431, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197208

RESUMO

The assessment of bioactivity for therapeutic antibody release assay poses challenges, particularly when targeting immune checkpoints. An in vitro bioassay platform was developed using the chimeric antigen receptor on Jurkat cells (Jurkat-CAR) to analyze antibodies targeting immune checkpoints, such as CD47/SIRPα, VEGF/VEGFR1, PD-1/PD-L1, and CD70/CD27. For CD47/SIRPα, the platform involved a Jurkat-CAR cell line expressing the chimeric SIRPα receptor (CarSIRPα). CarSIRPα was created by sequentially fusing the SIRPα extracellular region with the CD8α hinge region, the transmembrane (TM) and intracellular (IC) domains of CD28, and the intracellular signaling domain of CD3ζ. The resulting Jurkat-CarSIRPα cells can undergo "activation-induced cell death (AICD)" upon incubation with purified or cellular CD47, as evidenced by the upregulation of CD69, IL-2, and IFN-γ. Similar results also appeared in Jurkat CarVEGFR1, Jurkat CarPD1 and Jurkat CARCD27 cells. These cells are perfectly utilized for the bioactivity analysis of therapeutic antibody. Our study indicates that the established in vitro assay platform based on Jurkat-CAR has been confirmed repeatedly and has shown robust reproducibility; thus, this platform can be used for screening or for release assays of given antibody drugs targeting immune checkpoints.


Assuntos
Bioensaio , Receptores de Antígenos Quiméricos , Humanos , Células Jurkat , Bioensaio/métodos , Receptores Imunológicos/metabolismo , Antígeno CD47/metabolismo , Antígenos CD/imunologia , Interleucina-2 , Interferon gama , Morte Celular/efeitos dos fármacos , Antígenos de Diferenciação
13.
Neurochem Int ; 178: 105806, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025366

RESUMO

It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45ß. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45ß pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45ß signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45ß pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45ß signaling pathway to promote neuroplasticity.


Assuntos
Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I , Traumatismo por Reperfusão , Transdução de Sinais , Proteína Smad2 , Animais , Masculino , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Traumatismo por Reperfusão/metabolismo , Recuperação de Função Fisiológica/fisiologia , Proteína Duplacortina , Proteína Smad3/metabolismo , Isquemia Encefálica/metabolismo , Meio Ambiente , Infarto da Artéria Cerebral Média/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas GADD45 , Antígenos de Diferenciação
14.
Ann Surg Oncol ; 31(9): 6309-6319, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951413

RESUMO

BACKGROUND: Signal-regulatory protein alpha (SIRPα) is an immune checkpoint molecule expressed on macrophages that functions to inhibit phagocytosis by binding to CD47 expressed on tumor cells. SIRPα has attracted increasing attention as a novel target for cancer immunotherapy; however, the expression and immune function of SIRPα in lung squamous cell carcinoma (LUSC) remain unclear. Therefore, this study aimed to identify the clinical importance of SIRPα expression in LUSC and to explore the factors that elevate SIRPα expression. PATIENTS AND METHODS: Primary LUSC specimens surgically resected from 172 patients underwent immunohistochemical evaluation of the association of SIRPα expression on tumor-associated macrophages with clinicopathological features and clinical outcomes. Furthermore, we analyzed the association of SIRPα expression with tumor-infiltrating lymphocytes and the expression of programmed cell death ligand 1 (PD-L1). In vitro, monocytes were treated with cytokines, and SIRPα protein expression was assessed by flow cytometry. RESULTS: There were no differences in SIRPα expression and clinicopathological factors. High SIRPα expression was significantly associated with PD-L1-positive expression, and high CD8, PD-1, and CD163 expression. The high SIRPα expression group showed significantly shorter recurrence-free survival (RFS) and overall survival (OS). On multivariate analysis, high SIRPα expression was an independent poor prognostic factor for RFS and OS. The expression of SIRPα protein in monocytes was upregulated by treatment with IFNγ. CONCLUSION: Our analysis revealed that high SIRPα expression significantly predicts poor prognosis in patients with surgically resected LUSC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Receptores Imunológicos , Macrófagos Associados a Tumor , Humanos , Masculino , Receptores Imunológicos/metabolismo , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Macrófagos Associados a Tumor/metabolismo , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Taxa de Sobrevida , Prognóstico , Biomarcadores Tumorais/metabolismo , Idoso , Seguimentos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Antígeno B7-H1/metabolismo , Antígenos de Diferenciação/metabolismo , Relevância Clínica
15.
Horm Behav ; 164: 105603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029339

RESUMO

Deficiencies in maternal nutrition have long-term consequences affecting brain development of the progeny and its behavior. In the present work, female mice were exposed to a normal-protein or a low-protein diet during gestation and lactation. We analyzed behavioral and molecular consequences of malnutrition in dams and how it affects female offspring at weaning. We have observed that a low-protein diet during pregnancy and lactation leads to anxiety-like behavior and anhedonia in dams. Protein malnutrition during the perinatal period delays physical and neurological development of female pups. Glucocorticoid levels increased in the plasma of malnourished female offspring but not in dams when compared to the control group. Interestingly, the expression of glucocorticoid receptor (GR) was reduced in hippocampus and amygdala on both malnourished dams and female pups. In addition, malnourished pups exhibited a significant increase in the expression of Dnmt3b, Gadd45b, and Fkbp5 and a reduction in Bdnf VI variant mRNA in hippocampus. In contrast, a reduction on Dnmt3b has been observed on the amygdala of weaned mice. No changes have been observed on global methylation levels (5-methylcytosine) in hippocampal genomic DNA neither in dams nor female offspring. In conclusion, deregulated behaviors observed in malnourished dams might be mediated by a low expression of GR in brain regions associated with emotive behaviors. Additionally, low-protein diet differentially deregulates the expression of genes involved in DNA methylation/demethylation machinery in female offspring but not in dams, providing an insight into regional- and age-specific mechanisms due to protein malnutrition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Metilação de DNA , Hipocampo , Comportamento Materno , Efeitos Tardios da Exposição Pré-Natal , Receptores de Glucocorticoides , Proteínas de Ligação a Tacrolimo , Animais , Feminino , Gravidez , Camundongos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Comportamento Materno/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Hipocampo/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Dieta com Restrição de Proteínas , DNA Metiltransferase 3B , Deficiência de Proteína/metabolismo , Deficiência de Proteína/complicações , Ansiedade/etiologia , Glucocorticoides/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais Recém-Nascidos , Proteínas GADD45 , Antígenos de Diferenciação
16.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843934

RESUMO

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Quebras de DNA de Cadeia Dupla , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Bleomicina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Etoposídeo/farmacologia , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , Humanos , Proteínas GADD45
17.
PLoS One ; 19(6): e0304985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843278

RESUMO

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Assuntos
Antígenos de Diferenciação , Antígeno CD47 , Imunoconjugados , Receptores Imunológicos , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Animais , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Humanos , Camundongos , Imunoconjugados/farmacologia , Antígenos de Diferenciação/imunologia , Linhagem Celular Tumoral , Feminino , Trastuzumab/farmacologia , Inibidores da Topoisomerase I/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos BALB C
18.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38828721

RESUMO

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Assuntos
Macrófagos , Fagocitose , Receptores Imunológicos , Animais , Humanos , Camundongos , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Imunoterapia Adotiva , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino
19.
Curr Oncol ; 31(6): 3212-3226, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38920727

RESUMO

Neuroblastoma is a pediatric cancer with significant clinical heterogeneity. Despite extensive efforts, it is still difficult to cure children with high-risk neuroblastoma. Immunotherapy is a promising approach to treat children with this devastating disease. We have previously reported that macrophages are important effector cells in high-risk neuroblastoma. In this perspective article, we discuss the potential function of the macrophage inhibitory receptor SIRPA in the homeostasis of tumor-associated macrophages in high-risk neuroblastoma. The ligand of SIRPA is CD47, known as a "don't eat me" signal, which is highly expressed on cancer cells compared to normal cells. CD47 is expressed on both tumor and stroma cells, whereas SIRPA expression is restricted to macrophages in high-risk neuroblastoma tissues. Notably, high SIRPA expression is associated with better disease outcome. According to the current paradigm, the interaction between CD47 on tumor cells and SIRPA on macrophages leads to the inhibition of tumor phagocytosis. However, data from recent clinical trials have called into question the use of anti-CD47 antibodies for the treatment of adult and pediatric cancers. The restricted expression of SIRPA on macrophages in many tissues argues for targeting SIRPA on macrophages rather than CD47 in CD47/SIRPA blockade therapy. Based on the data available to date, we propose that disruption of the CD47-SIRPA interaction by anti-CD47 antibody would shift the macrophage polarization status from M1 to M2, which is inferred from the 1998 study by Timms et al. In contrast, the anti-SIRPA F(ab')2 lacking Fc binds to SIRPA on the macrophage, mimics the CD47-SIRPA interaction, and thus maintains M1 polarization. Anti-SIRPA F(ab')2 also prevents the binding of CD47 to SIRPA, thereby blocking the "don't eat me" signal. The addition of tumor-opsonizing and macrophage-activating antibodies is expected to enhance active tumor phagocytosis.


Assuntos
Antígenos de Diferenciação , Antígeno CD47 , Neuroblastoma , Receptores Imunológicos , Antígeno CD47/metabolismo , Humanos , Receptores Imunológicos/metabolismo , Macrófagos/metabolismo
20.
Ann Hematol ; 103(8): 3033-3042, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886192

RESUMO

BACKGROUND: The interaction between CD47 and signal-regulatory protein-alpha (SIRPα) inhibits phagocytosis, and their clinicopathological characteristics have been evaluated in various diseases. However, the significance of CD47 and SIRPα expression, as well as the combined effect, in Extranodal Natural killer/T-cell Lymphoma (ENKTL) remains uncertain. METHODS: In total, 76 newly diagnosed ENKTL patients (mean age 49.9 years, 73.7% male) were included in this study. CD47 and SIRPα expression were examined by immunohistochemistry. Survival analyses were conducted through Kaplan-Meier curves and the Cox regression model. RESULTS: Seventy-one (93.4%) cases were categorized as the CD47 positive group and 59 (77.6%) cases were categorized as the SIRPα positive group. CD47-negative cases had more advanced-stage illness (P = 0.001), while SIRPα-positive cases showed significantly lower levels of high-density lipoprotein (P < 0.001). In univariable analysis, CD47, SIRPα expression, and their combination were significantly associated with prognosis (P < 0.05). In multivariable analysis, only positive SIRPα expression remained significantly associated with superior overall survival (Hazard ratio [HR] 0.446; 95% confidence interval [CI] 0.207-0.963; P = 0.004). Furthermore, SIRPα expression could re-stratify the survival of patients in ECOG (< 2), advanced CA stage, PINK (HR), CD38-positive, PD1-positive, and CD30-positive groups. CONCLUSIONS: SIRPα status was a potential independent prognostic factor for ENKTL. The prognostic significance of CD47 expression and the interaction between CD47 and SIRPα in ENKTL need further investigation.


Assuntos
Antígeno CD47 , Linfoma Extranodal de Células T-NK , Receptores Imunológicos , Humanos , Antígeno CD47/metabolismo , Antígeno CD47/análise , Antígeno CD47/biossíntese , Masculino , Pessoa de Meia-Idade , Feminino , Receptores Imunológicos/metabolismo , Receptores Imunológicos/biossíntese , Linfoma Extranodal de Células T-NK/metabolismo , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/mortalidade , Adulto , Idoso , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/análise , Imuno-Histoquímica , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA