Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.385
Filtrar
1.
Commun Biol ; 7(1): 1115, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256556

RESUMO

The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identified a putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather may have originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, this taxon lacks insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.


Assuntos
Anopheles , Mosquitos Vetores , Anopheles/genética , Anopheles/classificação , Animais , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , África Ocidental , Resistência a Inseticidas/genética , Malária/transmissão , Genoma de Inseto , Sequenciamento Completo do Genoma , Filogenia
2.
BMC Biol ; 22(1): 206, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272107

RESUMO

BACKGROUND: Diapause, a pivotal phase in the insect life cycle, enables survival during harsh environmental conditions. Unraveling the gene expression profiles of the diapause process helps uncover the molecular mechanisms that underlying diapause, which is crucial for understanding physiological adaptations. In this study, we utilize RNA-seq and Ribo-seq data to examine differentially expressed genes (DEGs) and translational efficiency during diapause of Asian corn borer (Ostrinia furnacalis, ACB). RESULTS: Our results unveil genes classified as "forwarded", "exclusive", "intensified", or "buffered" during diapause, shedding light on their transcription and translation regulation patterns. Furthermore, we explore the landscape of lncRNAs (long non-coding RNAs) during diapause and identify differentially expressed lncRNAs, suggesting their roles in diapause regulation. Comparative analysis of different types of diapause in insects uncovers shared and unique KEGG pathways. While shared pathways highlight energy balance, exclusive pathways in the ACB larvae indicate insect-specific adaptations related to nutrient utilization and stress response. Interestingly, our study also reveals dynamic changes in the HSP70 gene family and proteasome pathway during diapause. Manipulating HSP protein levels and proteasome pathway by HSP activator or inhibitor and proteasome inhibitor affects diapause, indicating their vital role in the process. CONCLUSIONS: In summary, these findings enhance our knowledge of how insects navigate challenging conditions through intricate molecular mechanisms.


Assuntos
Diapausa de Inseto , Mariposas , Animais , Mariposas/fisiologia , Mariposas/genética , Diapausa de Inseto/fisiologia , Diapausa de Inseto/genética , Transcriptoma , Biossíntese de Proteínas , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/genética , Diapausa/genética , Diapausa/fisiologia , Genoma de Inseto , Transcrição Gênica
3.
Sci Data ; 11(1): 995, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266566

RESUMO

Achelura yunnanensis is a destructive pest of forests, causing substantial damage on tree growth and severe economic losses. Additionally, as a daytime-active moth, this species also holds important scientific value for investigating the genetic mechanisms governing day-night activity patterns of Lepidoptera. To facilitate effective pest control and deepen our understanding of the diurnal behavior's genetic basis of moths, genomic data for this species are crucial. In this study, we present a chromosome-level reference genome of A. yunnanensis (368.15 Mb in 32 chromosomes; scaffold N50 = 12.61 Mb; BUSCO completeness = 98.0%). Genome annotation shows that the new assembly comprises 37.10% (136.55 Mb) repetitive elements, 1,828 non-coding RNAs, and 15,523 protein-coding genes. Genes involved in lipid metabolism and xenobiotics biodegradation and metabolism, such as cytochrome P450 families, experienced significant expansion in the A. yunnanensis genome. The chromosome-level genome of A. yunnanensis provides a valuable genomic resource for devising novel pest control strategies, and will also help to study the genetic mechanism of the shift of diurnal behavior in Lepidoptera.


Assuntos
Genoma de Inseto , Mariposas , Animais , Mariposas/genética , Cromossomos de Insetos/genética , Florestas
4.
Sci Data ; 11(1): 997, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266578

RESUMO

Morabine grasshoppers in the Vandiemenella viatica species group, which show karyotype diversity, have been studied for their ecological distribution and speciation in relation to their genetic and chromosomal diversity. They are good models for studying sex chromosome evolution as "old" and newly emerged sex chromosomes co-exist within the group. Here we present a reference genome for the viatica19 chromosomal race, that possesses the ancestral karyotype within the group. Using PacBio HiFi and Hi-C sequencing, we generated a chromosome-level assembly of 4.09 Gb in span, scaffold N50 of 429 Mb, and complete BUSCO score of 98.1%, containing 10 pseudo-chromosomes. We provide Illumina datasets of males and females, used to identify the X chromosome. The assembly contains 19,034 predicted protein-coding genes, and a total of 75.21% of repetitive DNA sequences. By leveraging HiFi reads, we mapped the genome-wide distribution of methylated bases (5mC and 6 mA). This comprehensive assembly offers a robust reference for morabine grasshoppers and supports further research into speciation and sex chromosome diversification within the group and its related species.


Assuntos
Genoma de Inseto , Gafanhotos , Gafanhotos/genética , Animais , Masculino , Feminino , Cromossomos de Insetos/genética , Cariótipo
5.
BMC Genomics ; 25(1): 849, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256678

RESUMO

BACKGROUND: Research into the genetic diversity of honey bee (Apis mellifera L.) populations has become increasingly significant in recent decades, primarily due to population declines attributed to human activities and climate change. As a species of great importance, breeding programs that leverage understanding of genomic diversity could offer solutions to mitigate these challenges. The objective of this study was to examine the genomic diversity and population structure of Carniolan honey bees (Apis mellifera carnica) using the Illumina SNP chip on a large honey bee sample collected from Central and South-Eastern European countries. The study also aims to offer recommendations for future breeding programs. RESULTS: Our analysis involved Discriminant Analysis of Principal Components (DAPC), heterozygosity, admixture analysis, fixation indices (FST), Neighbour-Joining tree, gene flow and Isolation-by-distance analysis. DAPC indicated distinct separation between the Carniolan and Italian honey bee (Apis mellifera ligustica) populations, whereas the admixture analysis revealed varying levels of gene flow and genetic admixture within the Carniolan honey bee populations, demonstrating closer relationships between specific geographic regions (confirmed by Isolation-by-distance analysis). Furthermore, the research of heterozygosity, genomic inbreeding, pairwise FST values, and Neighbour-Joining tree provided insights into the patterns of genetic differentiation and similarity among the populations of Carniolan honey bee within its natural habitat. We have observed genetic homogeneity of the Carniolan honey bee population when considered in a broader genetic/geographical context. However, the Carniolan honey bee has sufficient genetic diversity in its geographical home range that needs to be carefully monitored and maintained. CONCLUSIONS: This study provides important insights into the genetic composition, differentiation, and relationships among Carniolan honey bee populations in Central and South-Eastern European countries. The findings are crucial for conservation efforts, breeding programs, and sustainable beekeeping practices. They emphasise the importance of considering genetic factors and population structure in the breeding and management of honey bees. By understanding these genetic relationships, we can develop strategies to preserve genetic diversity, improve breeding outcomes, and ensure the resilience of honey bee populations in the face of environmental changes and challenges. This knowledge can also inform policy makers and stakeholders on best practices to maintain healthy bee populations, which are vital for ecosystem services and agricultural productivity.


Assuntos
Ecossistema , Fluxo Gênico , Variação Genética , Abelhas/genética , Animais , Polimorfismo de Nucleotídeo Único , Genética Populacional , Genômica/métodos , Genoma de Inseto
6.
BMC Biol ; 22(1): 196, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256805

RESUMO

BACKGROUND: Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. RESULTS: This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. CONCLUSIONS: Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.


Assuntos
Genoma de Inseto , Receptores Odorantes , Vespas , Animais , Vespas/fisiologia , Vespas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sinais (Psicologia) , Cromossomos de Insetos/genética , Feminino , Interações Hospedeiro-Parasita
7.
BMC Biol ; 22(1): 190, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218865

RESUMO

BACKGROUND: Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial. RESULTS: We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago. CONCLUSIONS: By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.


Assuntos
Genoma de Inseto , Hemípteros , Filogenia , Transcriptoma , Animais , Hemípteros/genética , Hemípteros/classificação , Genômica , Evolução Molecular , Evolução Biológica
8.
Sci Data ; 11(1): 962, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232013

RESUMO

Arma chinensis is a natural enemy that preys on various species and can suppress agricultural and forest pests in the orders Lepidoptera and Coleoptera. Here, we aimed to determine the genome of A. chinensis assembled at the chromosome-level using PacBio and Hi-C technologies. The assembled genome was 986 Mb, with a contig N50 of 2.40 Mb, scaffold N50 of 134.98 Mb, and BUSCO completeness of 96.10%. Hi-C data aided in anchoring the assembly onto seven chromosomes. A sequence of ~ 496.2 Mb was annotated as a repeat element, constituting 51.15% of the genome. We functionally annotated 84.79% of 20,853 predicted protein-encoding genes. This high-quality A. chinensis genome provides a novel genomic resource for future research on Pentatomidae insects.


Assuntos
Genoma de Inseto , Animais , Cromossomos de Insetos/genética , Anotação de Sequência Molecular
9.
Sci Data ; 11(1): 963, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232034

RESUMO

Dryocosmus kuriphilus, commonly known as the chestnut gall wasp, belongs to the family Cynipidae and is native to China. It is a highly invasive insect species causing serious damage to chestnut trees and has rapidly spread to various continents, including Europe, North America, and Oceania. The D. kuriphilus has become one of the important pests of chestnut plants in the world and is listed as a quarantine object by the European and Mediterranean Plant Protection Organization (EPPO). In this study, we used PacBio long reads, Illumina short reads, and Hi-C sequencing data to construct a chromosome-level assembly of the D. kuriphilus genome. The assembled genome includes 14,729 contigs with a total length of 2.28 Gb and a contig N50 of 0.8 Mb. With Hi-C technology, 2.17 Gb (95.02%) of contigs were anchored and oriented into the 10 pseudochromosomes with the scaffold N50 of 198.8 Mb and the scaffold N90 of 158.8 Mb. In total, 24,086 protein-coding genes were predicted in the assembled D. kuriphilus genome as the reference gene set. A total of 1.82 Gb repeats (occupying 79.7% of the genome), including 1.42 Gb of transposable elements and 0.40 Gb of tandem repeats, were identified in D. kuriphilus genome. In the evaluation of completeness, the BUSCO analysis determined a level of 98.1% completeness for the assembled genome sequences based on the Insecta database (OrthoDB version 10). The high-quality genome assembly of D. kuriphilus will not only provide a valuable reference for the study of its evolutionary history and genetic structure but also facilitate the research of host-pest interactions and invasiveness. Moreover, this genome assembly will promote in the development of effective management strategies to mitigate the economic and ecological impacts of this invasive pest on chestnut trees and ecosystems.


Assuntos
Vespas , Animais , Fagaceae/genética , Genoma de Inseto , Vespas/genética
10.
BMC Genomics ; 25(1): 803, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187830

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is a co-/post-transcriptional modification introducing A-to-G variations in RNAs. There is extensive discussion on whether the flexibility of RNA editing exerts a proteomic diversification role, or it just acts like hardwired mutations to correct the genomic allele. Eusocial insects evolved the ability to generate phenotypically differentiated individuals with the same genome, indicating the involvement of epigenetic/transcriptomic regulation. METHODS: We obtained the genomes of 104 Hymenoptera insects and the transcriptomes of representative species. Comparative genomic analysis was performed to parse the evolutionary trajectory of a regulatory Ile > Met auto-recoding site in Adar gene. RESULTS: At genome level, the pre-editing Ile codon is conserved across a node containing all eusocial hymenopterans. At RNA level, the editing events are confirmed in representative species and shows considerable condition-specificity. Compared to random expectation, the editable Ile codon avoids genomic substitutions to Met or to uneditable Ile codons, but does not avoid mutations to other unrelated amino acids. CONCLUSIONS: The flexibility of Adar auto-recoding site in Hymenoptera is selectively maintained, supporting the flexible RNA editing hypothesis. We proposed a new angle to view the adaptation of RNA editing, providing another layer to explain the great phenotypical plasticity of eusocial insects.


Assuntos
Adenosina Desaminase , Adenosina , Evolução Molecular , Inosina , Edição de RNA , Animais , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Filogenia , Insetos/genética , Himenópteros/genética , Transcriptoma , Genoma de Inseto
11.
Arch Insect Biochem Physiol ; 116(4): e22145, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183528

RESUMO

Heat shock proteins (Hsp) function as crucial molecular chaperones, playing pivotal roles in insects' response to stress stimuli. Apolygus lucorum, known for its broad spectrum of host plants and significant crop damage potential, presents a compelling subject for understanding stress response mechanisms. Hsp is important for A. lucorum to tolerate temperature and insecticide stress and may be involved in the formation of resistance to the interactive effects of temperature and insecticide. Here, we employed comprehensive genomic approaches to identify Hsp superfamily members in its genome. In total, we identified 42 Hsp genes, including 3 Hsp90, 16 Hsp70, 13 Hsp60, and 10 Hsp20. Notably, we conducted motif analysis and gene structures for Hsp members, which suggested the same families are relatively conserved. Furthermore, leveraging the weighted gene coexpression network analysis, we observed diverse expression patterns of different Hsp types across various tissues, with certain Hsp70 showing tissue-specific bias. Noteworthy among the highly expressed Hsp genes was testis-specific, which may serve as a pivotal hub gene regulating the gene network. Our findings shed light on the molecular evolutionary dynamics and temperature stress response mechanisms of Hsp genes in A. lucorum, offering insights into its adaptive strategies and potential targets for pest management.


Assuntos
Proteínas de Choque Térmico , Proteínas de Insetos , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Genoma de Inseto , Heterópteros/genética , Heterópteros/metabolismo , Filogenia , Redes Reguladoras de Genes , Família Multigênica
12.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39117360

RESUMO

Understanding the evolutionary potential of mutations in gene regulatory networks is essential to furthering the study of evolution and development. However, in multicellular systems, genetic manipulation of regulatory networks in a targeted and high-throughput way remains challenging. In this study, we designed TF-High-Evolutionary (HighEvo), a transcription factor (TF) fused with a base editor (activation-induced deaminase), to continuously induce germline mutations at TF-binding sites across regulatory networks in Drosophila. Populations of flies expressing TF-HighEvo in their germlines accumulated mutations at rates an order of magnitude higher than natural populations. Importantly, these mutations accumulated around the targeted TF-binding sites across the genome, leading to distinct morphological phenotypes consistent with the developmental roles of the tagged TFs. As such, this TF-HighEvo method allows the interrogation of the mutational space of gene regulatory networks at scale and can serve as a powerful reagent for experimental evolution and genetic screens focused on the regulatory genome.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Inseto , Mutagênese , Drosophila/genética , Evolução Molecular , Drosophila melanogaster/genética
13.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112457

RESUMO

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Assuntos
Genômica , Isópteros , Filogenia , Isópteros/genética , Isópteros/classificação , Animais , Genômica/métodos , Genoma de Inseto
14.
Arch Insect Biochem Physiol ; 116(4): e22143, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166352

RESUMO

JH and ecdysone signaling regulate insect metamorphosis through the master transcription factors, Krüppel homolog 1 (kr-h1), Broad-Complex (BR-C), and E93. Ecdysone signaling activates successively expressed ecdysone responsive transcription factors (ERTFs), and the interaction between ERTFs determines the expression profiles of ERTFs themselves. Through the construction of expressed sequence tag (EST) database of Bombyx mori from many tissues, the existence of a large number of cuticular protein (CP) genes was identified in wing disc cDNA library of the 3 days after the start of wandering (W3). From the genomic analysis, 12 types of CP clusters of CP genes were identified. DNA sequences of CP genes revealed the duplication of CP genes, which suggests to reflect the insect evolution. These CP genes responded to ecdysone and ecdysone pulse; therefore, CP genes were applied for the analysis of transcriptional regulation by ERTF. The binding sites of ERTF have been reported to exist upstream of CP genes in several insects, and the activation of CP genes occurred by the binding of ERTFs. Through the analysis, the following were speculated; the successive appearance of ERTFs and the activation of target genes resulted in the successively produced CPs and cuticular layer. The sequence of the ERTF and CP gene expression was the same at larval to pupal and pupal to adult transformation. The involvement of several ERTFs in one CP gene expression was also clarified; BmorCPG12 belongs to group showing expression peak at W3 and was regulated by two ERTFs; BHR3 and ßFTZ-F1, BmorCPH2 belongs to group showing expression peak at P0 and was regulated by two ERTFs; ßFTZ-F1 and E74A. The involvement of BHR39 as a negative regulator of CP gene expression was found. Larval, pupal, and adult cuticular layers were supposed to be constructed by the combination of different and similar types of CPs, through the expressed timing of CP genes.


Assuntos
Bombyx , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Genoma de Inseto , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica , Metamorfose Biológica/genética
15.
Sci Data ; 11(1): 899, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154014

RESUMO

Among over 2,000 species of mealybugs (Hemiptera: Pseudococcidae), only 13 genomes have been published so far, seriously limiting the researches on the phylogeny and adaptive evolution of this group. The continuous publication of mealybug genomes will significantly facilitate our exploration of the biological characteristics, detrimental attributes, and control strategies of the Pseudococcidae family. Jack Beardsley mealybug (Pseudococcus jackbeardsleyi) as one of the hazardous invasive pests, it could cause enormous losses to the fruit and vegetable industries worldwide. Herein, we combined Nanopore long-read, short-read Illumina and Hi-C sequencing, generating a high-quality chromosome-level genome assembly of P. jackbeardsleyi. The genome size was determined to be 334.818 Mb, which was assembled into 5 linkage groups with a N50 of 67.233 Mb. The BUSCO analysis demonstrated the completeness of the genome assembly and annotation are 95.7% and 92.8%, respectively. The developed high-quality genome will serve as an asset for delving into the genetic mechanisms underlying the invasiveness of P. jackbeardsleyi, thereby offering a crucial theoretical foundation for the prevention and management of Pseudococcidae pests.


Assuntos
Genoma de Inseto , Hemípteros , Animais , Hemípteros/genética , Espécies Introduzidas , Tamanho do Genoma
16.
Sci Data ; 11(1): 918, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181902

RESUMO

Phlebotomine sand flies are the vectors of leishmaniasis, a neglected tropical disease. High-quality reference genomes are an important tool for understanding the biology and eco-evolutionary dynamics underpinning disease epidemiology. Previous leishmaniasis vector reference sequences were limited by sequencing technologies available at the time and inadequate for high-resolution genomic inquiry. Here, we present updated reference assemblies of two sand flies, Phlebotomus papatasi and Lutzomyia longipalpis. These chromosome-level assemblies were generated using an ultra-low input library protocol, PacBio HiFi long reads, and Hi-C technology. The new P. papatasi reference has a final assembly span of 351.6 Mb and contig and scaffold N50s of 926 kb and 111.8 Mb, respectively. The new Lu. longipalpis reference has a final assembly span of 147.8 Mb and contig and scaffold N50s of 1.09 Mb and 40.6 Mb, respectively. Benchmarking Universal Single-Copy Orthologue (BUSCO) assessments indicated 94.5% and 95.6% complete single copy insecta orthologs for P. papatasi and Lu. longipalpis. These improved assemblies will serve as an invaluable resource for future genomic work on phlebotomine sandflies.


Assuntos
Genoma de Inseto , Psychodidae , Animais , Psychodidae/genética , Phlebotomus/genética , Phlebotomus/classificação , Insetos Vetores/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
17.
Sci Data ; 11(1): 944, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209912

RESUMO

Diomorus aiolomorphi Kamijo (Hymenoptera: Torymidae) is an inquiline of gall maker Aiolomorphus rhopaloides Walker (Hymenoptera: Eurytomidae). They are of significant economic significance and predominantly inhabit bamboo forest. So far, only four scaffold-level genomes have been published for the family Torymidae. In this study, we present a high-quality genome assembly of D. aiolomorphi at the chromosome level, achieved through the integration of Nanopore (ONT) long-read, Illumina pair-end DNA short-read, and High-through Chromosome Conformation Capture (Hi-C) sequencing methods. The final assembly was 1,084.56 Mb in genome size, with 1,083.41 Mb (99.89%) assigned to five pseudochromosomes. The scaffold N50 length reached 224.87 Mb, and the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) score was 97.3%. The genome contained 762.12 Mb of repetitive elements, accounting for 70.27% of the total genome size. A total of 18,011 protein-coding genes were predicted, with 17,829 genes being functionally annotated. The high-quality genome assembly of D. aiolomorphi presented in this study will serve as a valuable genomic resource for future research on parasitoid wasps. The results of this study may also contribute to the development of biological control strategies for pest management in bamboo forests, enhancing ecological balance and economic sustainability.


Assuntos
Genoma de Inseto , Himenópteros , Animais , Cromossomos de Insetos , Tamanho do Genoma , Himenópteros/genética , Vespas/parasitologia , Conjuntos de Dados como Assunto
18.
Sci Data ; 11(1): 844, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097648

RESUMO

Episyrphus balteatus can provide dual ecosystem services including pest control and pollination, which the larvae are excellent predators of aphid pest whereas adults are efficient pollinator. In this study, we assembled a high-quality genome of E. balteatus from northern China geographical population at the chromosome level by using Illumina, PacBio long reads, and Hi-C technologies. The 467.42 Mb genome was obtained from 723 contigs, with a contig N50 of 9.16 Mb and Scaffold N50 of 118.85 Mb, and 90.25% (431.75 Mb) of the assembly was anchored to 4 pseudo-autosomes and one pseudo-heterosome. In total, 14,848 protein-coding genes were annotated, and 95.14% of genes were fully represented in NR, GO, KEGG databases. Besides, we also obtained the mitochondrial genome of E. balteatus of 16, 837 bp in length with 37 typical mitochondrial genes. Overall, this high-quality genome is valuable for evolutionary and genetic studies of E. balteatus and other Syrphidae hoverfly species.


Assuntos
Dípteros , Genoma de Inseto , Genoma Mitocondrial , Animais , Dípteros/genética , China , Cromossomos de Insetos/genética
19.
Int J Biol Macromol ; 278(Pt 1): 134646, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128738

RESUMO

The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.


Assuntos
Proteínas de Insetos , Metamorfose Biológica , Família Multigênica , Receptores Odorantes , Animais , Metamorfose Biológica/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Estudo de Associação Genômica Ampla , Genoma de Inseto , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Duplicação Gênica , Helicoverpa armigera
20.
BMC Genomics ; 25(1): 758, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095734

RESUMO

To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.


Assuntos
Evolução Molecular , Ácidos Graxos , Proteínas de Insetos , Filogenia , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ácidos Graxos/metabolismo , Besouros/genética , Besouros/metabolismo , Perfilação da Expressão Gênica , Genoma de Inseto , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA