Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.764
Filtrar
1.
Biomaterials ; 313: 122763, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180917

RESUMO

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Assuntos
Cobre , Nanomedicina , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Nanomedicina/métodos , Cobre/química , Cobre/farmacologia , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indóis/farmacologia
2.
Biomaterials ; 312: 122749, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121725

RESUMO

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Assuntos
Doença de Alzheimer , Apoptose , Barreira Hematoencefálica , Azul de Metileno , Nanomedicina , Doenças Neuroinflamatórias , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Apoptose/efeitos dos fármacos , Células PC12 , Doenças Neuroinflamatórias/tratamento farmacológico , Ratos , Camundongos , Nanomedicina/métodos , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
3.
Biomaterials ; 312: 122751, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121726

RESUMO

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Assuntos
Imunoterapia , Nanomedicina , Animais , Imunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica/métodos , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Adesivos/química , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia
4.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273183

RESUMO

Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects.


Assuntos
Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Animais , Nanomedicina/métodos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo
5.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273202

RESUMO

Lymphoid malignancies are complex diseases with distinct biological behaviors, clinical presentations, and treatment responses. Ongoing research and advancements in biotechnology enhance the understanding and management of these malignancies, moving towards more personalized approaches for diagnosis and treatment. Nanotechnology has emerged as a promising tool to improve some limitations of conventional diagnostics as well as treatment strategies for lymphoid malignancies. Nanoparticles (NPs) offer unique advantages such as enhanced multimodal detection, drug delivery, and targeted therapy capabilities, with the potential to improve precision medicine and patient outcomes. Here, we comprehensively examine the current landscape of nanoconstructs applied in the management of lymphoid disease. Through a comprehensive analysis of preclinical studies, we highlight the translational potential of NPs in revolutionizing the field of hematological malignancies, with a specific focus on lymphoid neoplasms.


Assuntos
Nanopartículas , Nanotecnologia , Humanos , Nanotecnologia/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Linfoma/diagnóstico , Linfoma/terapia , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Sistemas de Liberação de Medicamentos/métodos , Medicina de Precisão/métodos , Nanomedicina/métodos
6.
Eur J Pharmacol ; 982: 176969, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39218342

RESUMO

Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.


Assuntos
Nanomedicina , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Nanomedicina/métodos , Animais , Nanopartículas , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/terapia , Sistemas de Liberação de Medicamentos/métodos , Regeneração/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167486, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39218275

RESUMO

Tumors pose a major threat to human health, accounting for nearly one-sixth of global deaths annually. The primary treatments include surgery, radiotherapy, chemotherapy, and immunotherapy, each associated with significant side effects. This has driven the search for new therapies with fewer side effects and greater specificity. Nanotechnology has emerged as a promising field in this regard, particularly nanomolecular machines at the nanoscale. Nanomolecular machines are typically constructed from biological macromolecules like proteins, DNA, and RNA. These machines can be programmed to perform specialized tasks with precise instructions. Recent research highlights their potential in tumor diagnostics-identifying susceptibility genes, detecting viruses, and pinpointing tumor markers. Nanomolecular machines also offer advancements in tumor therapy. They can reduce traditional treatment side effects by delivering chemotherapy drugs and enhancing immunotherapy, and they support innovative treatments like sonodynamic and phototherapy. Additionally, they can starve tumors by blocking blood vessels, and eliminate tumors by disrupting cell membranes or lysosomes. This review categorizes and explains the latest achievements in molecular machine research, explores their models, and practical clinical uses in tumor diagnosis and treatment. It aims to broaden the research perspective and accelerate the clinical adoption of these technologies.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão/métodos , Imunoterapia/métodos , Nanotecnologia/métodos , Nanomedicina/métodos , Animais , Antineoplásicos/uso terapêutico
8.
Int J Nanomedicine ; 19: 9503-9547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296940

RESUMO

Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanomedicina , Nanoestruturas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Interações Medicamentosas
9.
Int J Nanomedicine ; 19: 8815-8830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220193

RESUMO

Diabetic wounds pose a significant challenge in modern healthcare due to their chronic and complex nature, often resulting in delayed healing, infections, and, in severe cases, amputations. In recent years, nanotherapeutic approaches have emerged as promising strategies to address the unique pathophysiological characteristics of diabetic wounds. This review paper provides a comprehensive overview of the latest advancements in nanotherapeutics for diabetic wound treatment. We discuss various nanomaterials and delivery systems employed in these emerging therapies. Furthermore, we explore the integration of biomaterials to enhance the efficacy of nanotherapeutic interventions. By examining the current state-of-the-art research, challenges, and prospects, this review aims to offer valuable insights for researchers, clinicians, and healthcare professionals working in the field of diabetic wound care.


Assuntos
Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Nanomedicina , Animais , Sistemas de Liberação de Medicamentos/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Diabetes Mellitus/terapia , Diabetes Mellitus/tratamento farmacológico , Complicações do Diabetes/terapia
10.
Int J Nanomedicine ; 19: 8831-8846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220195

RESUMO

Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Nanopartículas/química , Animais , Imageamento por Ressonância Magnética/métodos , Portadores de Fármacos/química , Tomografia Computadorizada por Raios X/métodos , Nanomedicina/métodos
11.
Int J Nanomedicine ; 19: 8847-8882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220190

RESUMO

Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.


Assuntos
Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Nanopartículas , Neoplasias , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Nanopartículas/química , Animais , Nanomedicina , Triptofano/química , Triptofano/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Cinurenina
12.
Int J Nanomedicine ; 19: 8797-8813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220198

RESUMO

Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.


Assuntos
Senescência Celular , Nanomedicina , Humanos , Senescência Celular/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos/métodos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Nanopartículas/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-39217459

RESUMO

Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanopartículas , Neoplasias , Poliésteres , Poliésteres/química , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos , Sistemas de Liberação de Medicamentos , Nanomedicina
15.
Theranostics ; 14(13): 5336-5370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267789

RESUMO

Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.


Assuntos
Antioxidantes , Isquemia Miocárdica , Nanomedicina , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Humanos , Nanomedicina/métodos , Isquemia Miocárdica/tratamento farmacológico , Animais , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos
16.
J Nanobiotechnology ; 22(1): 536, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227831

RESUMO

Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.


Assuntos
Bactérias , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Animais , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanomedicina/métodos , Fotoquimioterapia/métodos , Sistemas de Liberação de Medicamentos/métodos
17.
ACS Appl Mater Interfaces ; 16(37): 49660-49672, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39240784

RESUMO

Atherosclerosis is a persistent inflammatory condition of the blood vessels associated with abnormalities in lipid metabolism. Development of biomimetic nanoplatforms provides an effective strategy. Herein, inspired by the peptide CLIKKPF spontaneously coupling to phosphatidylserine (PS) on the inner leaflet of cell membranes specifically, MM@NPs were constructed by macrophage membrane spontaneous encapsulation of cyclodextrin-based nanoparticles modified with the peptide CLIKKPF and loaded with the hydrophobic compound resveratrol. MM@NPs could be specifically phagocytized by the activated endothelium with the overexpressed VCAM-1 for enhancing target delivery into the pathological lesion. Additionally, for the ApoE-/- mice, MM@NPs provide comprehensive treatment efficiency in reducing oxidant stress, alleviating the inherent inflammation, and decreasing cholesterol deposition, subsequently resulting in the atherosclerotic plaque regression. Therefore, MM@NPs could be one possible candidate for improving lipid metabolism and inflammation in atherosclerosis.


Assuntos
Aterosclerose , Ciclodextrinas , Inflamação , Metabolismo dos Lipídeos , Macrófagos , Nanopartículas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Nanopartículas/química , Células RAW 264.7 , Resveratrol/química , Resveratrol/farmacologia , Nanomedicina , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Humanos
18.
J Nanobiotechnology ; 22(1): 568, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285480

RESUMO

Systemic infection with Candida albicans poses a significant risk for people with weakened immune systems and carries a mortality rate of up to 60%. However, current therapeutic options have several limitations, including increasing drug tolerance, notable off-target effects, and severe adverse reactions. Over the past four decades, the progress in developing drugs to treat Candida albicans infections has been sluggish. This comprehensive review addresses the limitations of existing drugs and summarizes the efforts made toward redesigning and innovating existing or novel drugs through nanotechnology. The discussion explores the potential applications of nanomedicine in Candida albicans infections from four perspectives: nano-preparations for anti-biofilm therapy, innovative formulations of "old drugs" targeting the cell membrane and cell wall, reverse drug resistance therapy targeting subcellular organelles, and virulence deprivation therapy leveraging the unique polymorphism of Candida albicans. These therapeutic approaches are promising to address the above challenges and enhance the efficiency of drug development for Candida albicans infections. By harnessing nano-preparation technology to transform existing and preclinical drugs, novel therapeutic targets will be uncovered, providing effective solutions and broader horizons to improve patient survival rates.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Nanotecnologia , Humanos , Candida albicans/efeitos dos fármacos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Nanotecnologia/métodos , Animais , Farmacorresistência Fúngica/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
19.
Nat Commun ; 15(1): 8172, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289401

RESUMO

Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nanopartículas/química , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Transcitose , Transporte Biológico , Nanomedicina Teranóstica/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Nanomedicina/métodos
20.
Front Immunol ; 15: 1446532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247199

RESUMO

Despite the increasing number of studies on nanomedicine-based cancer immunotherapy, the overall research trends in this field remain inadequately characterized. This study aims to evaluate the research trends and hotspots in nanomedicine-based cancer immunotherapy through a bibliometric analysis. As of March 31, 2024, relevant publications were retrieved from the Web of Science Core Collection. Analytical tools including VOSviewer, CiteSpace, and an online bibliometric analysis platform were employed. A total of 5,180 publications were analyzed. The study reveals geographical disparities in research output, with China and the United States being the leading contributors. Institutionally, the Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Sichuan University are prominent contributors. Authorship analysis identifies key researchers, with Liu Zhuang being the most prolific author. "ACS Nano" and the "Journal of Controlled Release and Biomaterials" are identified as the leading journals in the field. Frequently occurring keywords include "cancer immunotherapy" and "drug delivery." Emerging frontiers in the field, such as "mRNA vaccine," "sonodynamic therapy," "oral squamous cell carcinoma," "STING pathway,"and "cGAS-STING pathway," are experiencing rapid growth. This study aims to provide new insights to advance scientific research and clinical applications in nanomedicine-based cancer immunotherapy.


Assuntos
Bibliometria , Imunoterapia , Nanomedicina , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Vacinas Anticâncer/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA