Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80.226
Filtrar
1.
Methods Mol Biol ; 2848: 187-196, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240524

RESUMO

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas , Células Ganglionares da Retina , Humanos , Animais , Camundongos , Células-Tronco Embrionárias Humanas/citologia , Células Ganglionares da Retina/citologia , Transplante de Células-Tronco/métodos , Organoides/citologia , Organoides/transplante , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Retina/citologia , Células-Tronco Embrionárias/citologia
2.
Methods Mol Biol ; 2848: 85-103, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240518

RESUMO

Recent technological advances in single-cell RNA sequencing (scRNA-Seq) have enabled scientists to answer novel questions in biology with unparalleled precision. Indeed, in the field of ocular development and regeneration, scRNA-Seq studies have resulted in a number of exciting discoveries that have begun to revolutionize the way we think about these processes. Despite the widespread success of scRNA-Seq, many scientists are wary to perform scRNA-Seq experiments due to the uncertainty of obtaining high-quality viable cell populations that are necessary for the generation of usable data that enable rigorous computational analyses. Here, we describe methodology to reproducibility generate high-quality single-cell suspensions from embryonic zebrafish eyes. These single-cell suspensions served as inputs to the 10× Genomics v3.1 system and yielded high-quality scRNA-Seq data in proof-of-principle studies. In describing methodology to quantitatively assess cell yields, cell viability, and other critical quality control parameters, this protocol can serve as a useful starting point for others in designing their scRNA-Seq experiments in the zebrafish eye and in other developing or regenerating tissues in zebrafish or other model systems.


Assuntos
Retina , Análise de Sequência de RNA , Análise de Célula Única , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Análise de Célula Única/métodos , Retina/citologia , Retina/embriologia , Retina/metabolismo , Análise de Sequência de RNA/métodos , Separação Celular/métodos
3.
Methods Mol Biol ; 2848: 117-134, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240520

RESUMO

Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.


Assuntos
Células Ependimogliais , Retina , Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Retina/metabolismo , Células Ependimogliais/metabolismo , Regeneração/genética , Análise de Sequência de RNA/métodos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , RNA-Seq/métodos , Modelos Animais de Doenças
4.
Methods Mol Biol ; 2848: 75-84, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240517

RESUMO

Zebrafish maintain a remarkable ability to regenerate their neural retina following rapid and extensive loss of retinal neurons. This is mediated by Müller glial cells (MG), which re-enter the cell cycle to produce amplifying progenitor cells that eventually differentiate into the lost retinal neurons. For example, exposing adult albino zebrafish to intense light destroys large numbers of rod and cone photoreceptors, which are then restored by MG-mediated regeneration. Here, we describe an updated method for performing these acute phototoxic lesions to adult zebrafish retinas. Next, we contrast this method to a chronic, low light lesion model that results in a more muted and sustained damage to photoreceptors and does not trigger a MG-mediated regeneration response. Thus, these two methods can be used to compare and contrast the genetic and morphological changes associated with acute and chronic methods of photoreceptor degeneration.


Assuntos
Modelos Animais de Doenças , Degeneração Retiniana , Peixe-Zebra , Animais , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Luz , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Retina/metabolismo
5.
Methods Mol Biol ; 2848: 151-167, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240522

RESUMO

High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.


Assuntos
Modelos Animais de Doenças , Angiofluoresceinografia , Retina , Doenças Retinianas , Tomografia de Coerência Óptica , Animais , Tomografia de Coerência Óptica/métodos , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/patologia , Doenças Retinianas/diagnóstico , Retina/diagnóstico por imagem , Retina/patologia , Angiofluoresceinografia/métodos , Camundongos , Ratos , Roedores , Imagem Óptica/métodos , Humanos , Fundo de Olho
6.
Methods Mol Biol ; 2848: 169-186, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240523

RESUMO

The retinal explant culture system is a valuable tool for studying the pharmacological, toxicological, and developmental aspects of the retina. It is also used for translational studies such as gene therapy. While no photoreceptor-like cell lines are available for in vitro studies of photoreceptor cell biology, the retinal explant culture maintains the laminated retinal structure ex vivo for as long as a month. Human and nonhuman primate (NHP) postmortem retinal explants cut into small pieces offer the possibility of testing multiple conditions for safety and adeno-associated viral (AAV) vector optimization. In addition, the cone-enriched foveal area can be studied using the retinal explants. Here, we present a detailed working protocol for retinal explant isolation and culture from mouse, human, and NHP for testing drug efficacy and AAV transduction. Future applications of this protocol include combining live imaging and multiwell retinal explant culture for high-throughput drug screening systems in rodent and human retinal explants to identify new drugs against retinal degeneration.


Assuntos
Dependovirus , Retina , Animais , Humanos , Camundongos , Retina/citologia , Dependovirus/genética , Primatas , Vetores Genéticos/genética , Técnicas de Cultura de Tecidos/métodos , Transdução Genética
7.
Methods Mol Biol ; 2848: 135-150, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240521

RESUMO

Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.


Assuntos
Vesículas Extracelulares , Regeneração , Retina , Animais , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/citologia , Retina/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Camundongos , Comunicação Celular , Proliferação de Células , Regeneração Nervosa/fisiologia
8.
Methods Mol Biol ; 2848: 217-247, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240526

RESUMO

Various strategies for replacing retinal neurons lost in degenerative diseases are under investigation, including stimulating the endogenous regenerative capacity of Müller Glia (MG) as injury-inducible retinal stem cells. Inherently regenerative species, such as zebrafish, have provided key insights into mechanisms regulating MG dedifferentiation to a stem-like state and the proliferation of MG and MG-derived progenitor cells (MGPCs). Interestingly, promoting MG/MGPC proliferation is not sufficient for regeneration, yet mechanistic studies are often focused on this measure. To fully account for the regenerative process, and facilitate screens for factors regulating cell regeneration, an assay for quantifying cell replacement is required. Accordingly, we adapted an automated reporter-assisted phenotypic screening platform to quantify the pace of cellular regeneration kinetics following selective cell ablation in larval zebrafish. Here, we detail a method for using this approach to identify chemicals and genes that control the rate of retinal cell regeneration following selective retinal cell ablation.


Assuntos
Peixe-Zebra , Animais , Retina/citologia , Retina/metabolismo , Fenótipo , Proliferação de Células , Regeneração , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Cinética , Regeneração Nervosa/fisiologia
9.
Results Probl Cell Differ ; 73: 229-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39242382

RESUMO

The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.


Assuntos
Comunicação Celular , Retina , Animais , Humanos , Retina/fisiologia , Comunicação Celular/fisiologia , Pericitos/fisiologia , Nanotubos , Camundongos , Acoplamento Neurovascular/fisiologia , Vasos Retinianos/fisiologia , Estruturas da Membrana Celular
10.
J Comp Neurol ; 532(8): e25663, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39235164

RESUMO

The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.


Assuntos
Callithrix , Fatores de Transcrição Forkhead , Células Ganglionares da Retina , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Células Ganglionares da Retina/metabolismo , Masculino , Feminino , Retina/metabolismo , Retina/citologia
11.
Sci Rep ; 14(1): 20829, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242760

RESUMO

This study compared the thickness of each intraretinal layer in patients with neurofibromatosis 1 (NF1) and controls to analyze the association between intraretinal layer thickness and visual function. The macular spectral-domain optical coherence tomography volumetric dataset obtained from 68 eyes (25 adult eyes, 43 pediatric eyes) with NF1 without optic glioma and 143 control eyes (100 adult eyes, 43 pediatric eyes) was used for image auto-segmentation. The intraretinal layers segmented from the volumetric data included the macular retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer. Cases and controls were compared after adjusting for age, sex, refractive error, and binocular use. The association between retinal layer thickness and visual acuity was also analyzed. The GCIPL was significantly thinner in both adult and pediatric patients with NF1 compared with healthy controls. Average RNFL and GCIPL thicknesses were associated with visual acuity in adult patients with NF1. In pediatric patients, average GCIPL thickness was associated with visual acuity. These results suggest that changes in the inner retinal layer could be a biomarker of the structural and functional status of patients with NF1.


Assuntos
Neurofibromatose 1 , Retina , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/patologia , Feminino , Masculino , Criança , Adulto , Tomografia de Coerência Óptica/métodos , Adolescente , Acuidade Visual/fisiologia , Retina/diagnóstico por imagem , Retina/patologia , Pessoa de Meia-Idade , Adulto Jovem , Estudos de Casos e Controles , Células Ganglionares da Retina/patologia , Fibras Nervosas/patologia
12.
Ann Med ; 56(1): 2397573, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39233610

RESUMO

PURPOSE: To evaluate the findings and the correlation of optical coherence tomography angiography and pattern and flash electroretinography in diabetes mellitus without retinopathy. METHODS: Seventy-six eyes of 38 diabetic patients and age- and gender-matched control subjects were included in the study. The foveal avascular zone (FAZ), whole, foveal, parafoveal and perifoveal vascular densities of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillary plexus (CCP) layers were analyzed using optical coherence tomography angiography (OCTA). The amplitudes and implicit times of P50 and N95 waves of the pattern ERG (pERG) and the amplitudes and implicit times of the scotopic and photopic b-waves and oscillatory potentials (OP) of the flash ERG (fERG) tests were evaluated using the Metrovision brand monpack model device. RESULTS: The mean age of the patients was 59.7 ± 7.9 [range 43-79] years. Eighteen (47%) of the patients were female and 20 (53%) were male. The mean duration of diabetes was 7.45 ± 6.2 [range 1-20] years. No significant difference in FAZ area was found between study subjects and controls. Vascular density (VD) values of the superficial capillary plexus (SCP) layer were significantly lower (whole VD, 44.7 ± 3.3 vs. 46.6 ± 3.2%, p = 0.01, foveal VD 16.8 ± 6.4 vs. 24.9 ± 6.1%, p < 0.01, parafoveal VD 45.6 ± 4.5 vs. 47.1 ± 4.4%, p = 0.27 and perifoveal VD 45.5 ± 3.3 vs. 47.3 ± 3.1%, p = 0.01, respectively) in the diabetic group except the parafoveal area. VD measurements in deep and choriocapillary plexuses did not significantly differ between the groups (p > 0.05). ERG tests revealed significantly lower scotopic b-wave amplitudes (130.2 ± 39.3 µV vs.163.3 ± 47.8 µV, p < 0.01) and photopic b-wave amplitudes (83.2 ± 20.7 µV vs. 99.6 ± 29.4 µV, p < 0.01) in the diabetic patients. The implicit time of the photopic responses was significantly prolonged (28.9 ± 1.3 ms vs. 27.8 ± 2.1 ms, p = 0.01) in the patients. Oscillatory potentials in all components consisting of O1 to O4 and the sum of the OP potentials were lower in the diabetic group than the control subjects (p < 0.001). The P50 and N95 amplitudes and implicit times were comparable between the groups (p > 0.05). Correlation analysis showed a positive correlation between N95 amplitudes in pERG and the superficial vessel densities in OCTA (r = 0.26, p = 0.04). A negative correlation was found between photopic implicit times in fERG and the choriocapillary vessel densities (r=-0.27, p = 0.03). CONCLUSION: OCTA revealed decreased superficial vascular densities with the onset of the metabolic process of diabetes mellitus. As a result of these structural changes, lower scotopic and photopic amplitudes, decreased OP amplitudes, and prolonged implicit times in flash ERG were obtained.


Assuntos
Eletrorretinografia , Tomografia de Coerência Óptica , Humanos , Eletrorretinografia/métodos , Masculino , Tomografia de Coerência Óptica/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Angiofluoresceinografia/métodos , Retinopatia Diabética/fisiopatologia , Retinopatia Diabética/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiopatologia , Estudos de Casos e Controles , Fóvea Central/diagnóstico por imagem , Fóvea Central/irrigação sanguínea , Fóvea Central/fisiopatologia , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/fisiopatologia
13.
Sci Rep ; 14(1): 20746, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237619

RESUMO

Long term use of Amiodarone (AMIO) is associated with the development of ocular adverse effects. This study investigates the short term effects, and the ameliorative consequence of vitamin E on retinal changes that were associated with administration of AMIO. This is accomplished by investigating both retinal structural and conformational characteristics using Fourier transform infrared spectroscopy (FTIR) and Fundus examination. Three groups of healthy rabbits of both sexes were used; the first group served as control. The second group was orally treated with AMIO (160 mg /kg body weight) in a daily basis for two weeks. The last group orally received AMIO as the second group for two weeks then, oral administration of vitamin E (100 mg/kg body weight) for another two weeks as well. FTIR results revealed significant structural and conformational changes in retinal tissue constituents that include lipids and proteins due to AMIO administration. AMIO treatment was associated with fluctuated changes (increased/decreased) in the band position and bandwidth of NH, OH, and CH bonds. This was concomitant with changes in the percentage of retinal protein constituents in particularly α-helix and Turns. AMIO facilitates the formation of intra-molecular hydrogen bonding and turned retinal lipids to be more disordered structure. In conclusion, the obtained FTIR data together with principal component analysis provide evidence that administration of vitamin E following the treatment with AMIO can ameliorate these retinal changes and, these biophysical changes are too early to be detected by Fundus examination.


Assuntos
Amiodarona , Retina , Vitamina E , Animais , Vitamina E/farmacologia , Vitamina E/administração & dosagem , Amiodarona/administração & dosagem , Amiodarona/farmacologia , Coelhos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Masculino , Feminino , Suplementos Nutricionais
15.
Int J Nanomedicine ; 19: 9273-9289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282576

RESUMO

Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.


Assuntos
Portadores de Fármacos , Humanos , Animais , Portadores de Fármacos/química , Injeções Intraoculares , Retina , Doenças Retinianas/terapia , Doenças Retinianas/tratamento farmacológico , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Degeneração Macular/terapia
16.
J Vis Exp ; (210)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39283141

RESUMO

The primary supporting cell of the retina is the retinal glial Müller cell. They cover the entire retinal surface and are in close proximity to both the retinal blood vessels and the retinal neurons. Because of their growth, Müller cells perform several crucial tasks in a healthy retina, including the uptake and recycling of neurotransmitters, retinoic acid compounds, and ions (like potassium K+). In addition to regulating blood flow and maintaining the blood-retinal barrier, they also regulate the metabolism and the supply of nutrients to the retina. An established procedure for isolating primary mouse Müller cells is presented in this manuscript. To better understand the underlying molecular processes involved in the various mouse models of ocular disorders, Müller cell isolation is an excellent approach. This manuscript outlines a detailed procedure for Müller cell isolation from mice. From enucleation to seeding, the entire process lasts about a few hours. For 5-7 days after seeding, the media shouldn't be changed in order to allow the isolated cells to grow unhindered. Cell characterization using morphology and distinct immunofluorescent markers comes next in the process. Maximum passages for cells are 3-4 times.


Assuntos
Células Ependimogliais , Retina , Animais , Camundongos , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Retina/citologia , Técnicas Citológicas/métodos , Neuroglia/citologia , Neuroglia/metabolismo
17.
Sci Rep ; 14(1): 21583, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284847

RESUMO

Retinitis pigmentosa (RP) is a genetic blinding disease with over 80 causative genes. Disease progression varies between patients with similar genetic backgrounds. We assessed the association between environment, gut microbiota, and retinal degeneration in the RP rat model Royal College of Surgeons (RCS). The rats were born and raised for two generations under specific pathogen-free (SPF, n = 69) or non-SPF conditions (n = 48). At the age of four weeks, SPF rats had significantly shorter dark-adapted a-wave and dark and light-adapted b-wave implicit times by electroretinogram (p = 0.014, p = 9.5*10-6, p = 0.009, respectively). The SPF rats had significantly less photoreceptor apoptosis at ages four, eight, and twelve weeks (all p < 0.022), significantly thicker debris zone at age 14 weeks, and smaller hypofluorescent lesions in SPF rats at ages 10-16 weeks, especially in the inferior retina. The non-SPF rats had significantly higher microbiota alpha diversity (p = 0.037) and failed to present the age-related maturation of Proteobacteria, Spirochaetes, Actinobacteria, and Bacteroidetes seen in SPF conditions. Specific microbial amplicon sequence variants were reduced in rats with more severe retinal degeneration. Our data suggest an environmental effect on retinal deterioration in RCS rats. These findings may lead to the development of novel microbiome-related interventions for retinal degeneration.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Degeneração Retiniana , Animais , Ratos , Degeneração Retiniana/microbiologia , Degeneração Retiniana/patologia , Organismos Livres de Patógenos Específicos , Eletrorretinografia , Retinose Pigmentar/microbiologia , Retinose Pigmentar/patologia , Retina/microbiologia , Retina/patologia , Abrigo para Animais , Masculino
18.
Nat Commun ; 15(1): 7964, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261491

RESUMO

Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.


Assuntos
Movimentos Oculares , Fixação Ocular , Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Movimentos Oculares/fisiologia , Masculino , Fixação Ocular/fisiologia , Macaca mulatta , Teorema de Bayes , Algoritmos , Potenciais de Ação/fisiologia , Estimulação Luminosa , Modelos Neurológicos
19.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273559

RESUMO

Inherited retinal degenerations (IRDs) are a group of genetic disorders characterized by the progressive degeneration of retinal cells, leading to irreversible vision loss. SLC4A7 has emerged as a candidate gene associated with IRDs, yet its mechanisms remain largely unknown. This study aims to investigate the role of slc4a7 in retinal development and its associated molecular pathogenesis in zebrafish. Morpholino oligonucleotide knockdown, CRISPR/Cas9 genome editing, quantitative RT-PCR, eye morphometric measurements, immunofluorescent staining, TUNEL assays, visual motor responses, optokinetic responses, rescue experiments, and bulk RNA sequencing were used to assess the impact of slc4a7 deficiency on retinal development. Our results demonstrated that the knockdown of slc4a7 resulted in a dose-dependent reduction in eye axial length, ocular area, and eye-to-body-length ratio. The fluorescence observations showed a significant decrease in immunofluorescence signals from photoreceptors and in mCherry fluorescence from RPE in slc4a7-silenced morphants. TUNEL staining uncovered the extensive apoptosis of retinal cells induced by slc4a7 knockdown. Visual behaviors were significantly impaired in the slc4a7-deficient larvae. GO and KEGG pathway analyses reveal that differentially expressed genes are predominantly linked to aspects of vision, ion channels, and phototransduction. This study demonstrates that the loss of slc4a7 in larvae led to profound visual impairments, providing additional insights into the genetic mechanisms predisposing individuals to IRDs caused by SLC4A7 deficiency.


Assuntos
Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Retina/metabolismo , Retina/patologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Técnicas de Silenciamento de Genes , Regulação da Expressão Gênica no Desenvolvimento , Apoptose/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/genética
20.
Sci Rep ; 14(1): 20442, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227640

RESUMO

Govetto's staging system (stages 1-4) for epiretinal membrane (ERM) based on optical coherence tomography images is a useful predictor of monocular visual function; however, an association between Govetto's stage and binocular vision has not been reported. This study aimed to investigate the factors associated with Govetto's stage among the monocular and binocular parameters. This retrospective study included consecutive patients with treatment-naïve eyes with unilateral ERM without pseudo-hole. We investigated Govetto's stage, degrees of aniseikonia and metamorphopsia, foveal avascular zone area, central retinal and choroidal thickness, vertical ocular deviation, stereopsis, and binocular single vision (BSV). We compared the parameters between the BSV-present and BSV-absent groups and investigated correlations between Govetto's stage and the monocular and binocular parameters. Twenty-eight eyes of 28 patients were examined (age, 66.6 ± 10.2 years). In multivariate correlation analyses, Govetto's stage correlated with BSV (P = 0.04, ß = - 0.36) and central retinal thickness (P < 0.001, ß = 0.74). Of the eyes, 18 were assigned to the BSV-present group and 10 to the BSV-absent group. Govetto's stage was significantly more advanced in the BSV-absent group than in the BSV-present group (3.2 ± 0.8 vs 2.5 ± 0.7, P = 0.03). Of the 28 patients, 11 (39%) showed small-angle vertical deviations (1-12Δ). In conclusion, our findings showed that Govetto's stage correlated with binocular vision in patients with monocular ERM. Govetto's staging is a useful parameter for predicting not only monocular but also binocular vision.


Assuntos
Membrana Epirretiniana , Tomografia de Coerência Óptica , Visão Binocular , Humanos , Idoso , Masculino , Feminino , Visão Binocular/fisiologia , Membrana Epirretiniana/fisiopatologia , Membrana Epirretiniana/diagnóstico por imagem , Membrana Epirretiniana/patologia , Tomografia de Coerência Óptica/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Acuidade Visual/fisiologia , Retina/fisiopatologia , Retina/diagnóstico por imagem , Retina/patologia , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA