Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.850
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125011, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39213831

RESUMO

Thiols function as antioxidants in food, prolonging shelf life and enhancing flavor. Moreover, thiols are vital biomolecules involved in enzyme activity, cellular signal transduction, and protein folding among critical biological processes. In this paper, the fluorescent probe PYL-NBD was designed and synthesized, which utilized the fluorescent molecule pyrazoline, the lysosome-targeted morpholine moiety, and the sensing moiety NBD. Probe PYL-NBD was tailored for the recognition of biothiols through single-wavelength excitation, yielding distinct fluorescence emission signals: blue for Cys, Hcy, and GSH; green for Cys, Hcy. Probe PYL-NBD exhibited rapid reaction kinetics (<10 min), distinct fluorescence response signals, and low detection limits (15.7 nM for Cys, 14.4 nM for Hcy, and 12.6 nM for GSH). Probe PYL-NBD enabled quantitative determination of Cys content in food samples and L-cysteine capsules. Furthermore, probe PYL-NBD had been successfully applied for confocal imaging with dual-channel detection of biothiols in various biological specimens, including HeLa cells, zebrafish, tumor sections, and Arabidopsis thaliana.


Assuntos
Cisteína , Corantes Fluorescentes , Análise de Alimentos , Glutationa , Lisossomos , Espectrometria de Fluorescência , Peixe-Zebra , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Lisossomos/química , Lisossomos/metabolismo , Células HeLa , Cisteína/análise , Animais , Análise de Alimentos/métodos , Glutationa/análise , Espectrometria de Fluorescência/métodos , Homocisteína/análise , Arabidopsis/química , Limite de Detecção , Microscopia Confocal
2.
J Med Virol ; 96(9): e29906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262090

RESUMO

Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.


Assuntos
Antivirais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Exossomos , Vírus da Influenza A , Lisossomos , Animais , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/virologia , Exossomos/metabolismo , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Macrófagos/virologia , Macrófagos/efeitos dos fármacos , Pulmão/virologia
3.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273169

RESUMO

Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 µM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.


Assuntos
Apoptose , Autofagia , Fibroblastos , Glucosilceramidase , Mitocôndrias , Estresse Oxidativo , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Humanos , Fibroblastos/metabolismo , Autofagia/genética , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Pele/metabolismo , Pele/patologia , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação
4.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273517

RESUMO

Several years ago, dozens of cases were described in patients with symptoms very similar to mucopolysaccharidosis (MPS). This new disease entity was described as mucopolysaccharidosis-plus syndrome (MPSPS). The name of the disease indicates that in addition to the typical symptoms of conventional MPS, patients develop other features such as congenital heart defects and kidney and hematopoietic system disorders. The symptoms are highly advanced, and patients usually do not survive past the second year of life. MPSPS is inherited in an autosomal recessive manner and is caused by a homozygous-specific mutation in the gene encoding the VPS33A protein. To date, it has been described in 41 patients. Patients with MPSPS exhibited excessive excretion of glycosaminoglycans (GAGs) in the urine and exceptionally high levels of heparan sulfate in the plasma, but the accumulation of substrates is not caused by a decrease in the activity of any lysosomal enzymes. Here, we discuss the pathomechanisms and symptoms of MPSPS, comparing them to those of MPS. Moreover, we asked the question whether MPSPS should be classified as a type of MPS or a separate disease, as contrary to 'classical' MPS types, despite GAG accumulation, no defects in lysosomal enzymes responsible for degradation of these compounds could be detected in MPSPS. The molecular mechanism of the appearance of GAG accumulation in MPSPS is suggested on the basis of results available in the literature.


Assuntos
Mucopolissacaridoses , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/urina , Mutação , Lisossomos/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Síndrome
5.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273545

RESUMO

Cytopathology induced by methamphetamine (METH) is reminiscent of degenerative disorders such as Parkinson's disease, and it is characterized by membrane organelles arranged in tubulo-vesicular structures. These areas, appearing as clusters of vesicles, have never been defined concerning the presence of specific organelles. Therefore, the present study aimed to identify the relative and absolute area of specific membrane-bound organelles following a moderate dose (100 µM) of METH administered to catecholamine-containing PC12 cells. Organelles and antigens were detected by immunofluorescence, and they were further quantified by plain electron microscopy and in situ stoichiometry. This analysis indicated an increase in autophagosomes and damaged mitochondria along with a decrease in lysosomes and healthy mitochondria. Following METH, a severe dissipation of hallmark proteins from their own vesicles was measured. In fact, the amounts of LC3 and p62 were reduced within autophagy vacuoles compared with the whole cytosol. Similarly, LAMP1 and Cathepsin-D within lysosomes were reduced. These findings suggest a loss of compartmentalization and confirm a decrease in the competence of cell clearing organelles during catecholamine degeneration. Such cell entropy is consistent with a loss of energy stores, which routinely govern appropriate subcellular compartmentalization.


Assuntos
Autofagossomos , Lisossomos , Metanfetamina , Metanfetamina/farmacologia , Animais , Células PC12 , Ratos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Catepsina D/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
6.
Nat Commun ; 15(1): 7743, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231962

RESUMO

Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.


Assuntos
Autofagossomos , Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte , Lisossomos , Lisossomos/metabolismo , Humanos , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Sistemas CRISPR-Cas , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Hidrolases/metabolismo , Hidrolases/genética , Células HeLa , Células HEK293
7.
Results Probl Cell Differ ; 73: 3-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39242372

RESUMO

Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.


Assuntos
Núcleo Celular , Organelas , Humanos , Animais , Núcleo Celular/metabolismo , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Complexo de Golgi/metabolismo
8.
Nat Commun ; 15(1): 7886, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251576

RESUMO

Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.


Assuntos
Citosol , Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Humanos , Citosol/metabolismo , Animais , Células HEK293 , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Camundongos , Células HeLa , Ligação Proteica , Estresse do Retículo Endoplasmático
9.
Nat Commun ; 15(1): 7923, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256387

RESUMO

Ferroptosis is a promising strategy for cancer therapy, with numerous inhibitors of its braking axes under investigation as potential drugs. However, few studies have explored the potential of activating the driving axes to induce ferroptosis. Herein, phosphatidylcholine peroxide decorating liposomes (LIPPCPO) are synthesized to induce ferroptosis by targeting divalent metal transporter 1 (DMT1). LIPPCPO is found to boost lysosomal Fe2+ efflux by inducing cysteinylation of lysosomal DMT1, resulting in glutathione peroxidase 4 (GPX4) suppression, glutathione depletion and ferroptosis in breast cancer cells and xenografts. Importantly, LIPPCPO induced ferroptotic cell death is independent of acquired resistance to radiation, chemotherapy, or targeted agents in 11 cancer cell lines. Furthermore, a strong synergistic ferroptosis effect is observed between LIPPCPO and an FDA-approved drug, artesunate, as well as X rays. The formula of LIPPCPO encapsulating artesunate significantly inhibits tumor growth and metastasis and improves the survival rate of breast cancer-bearing female mice. These findings provide a distinct strategy for inducing ferroptosis and highlight the potential of LIPPCPO as a vector to synergize the therapeutic effects of conventional ferroptosis inducers.


Assuntos
Neoplasias da Mama , Ferroptose , Lipossomos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/efeitos dos fármacos , Animais , Humanos , Feminino , Linhagem Celular Tumoral , Camundongos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Lipossomos/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Artesunato/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Ferro/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos Nus , Glutationa/metabolismo , Camundongos Endogâmicos BALB C
10.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39259305

RESUMO

How are Rab GTPases regulated during lysosome-related organelle (LRO) biogenesis? Li et al. (https://doi.org/10.1083/jcb.202402016) identify LYSMD proteins as crucial activators of Rab32-family GTPases in LRO development, shedding light on the previously ambiguous mechanisms governing Rab functionality in this process.


Assuntos
Lisossomos , Biogênese de Organelas , Proteínas rab de Ligação ao GTP , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Animais , Organelas/metabolismo
11.
Sci Transl Med ; 16(764): eadi0284, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259813

RESUMO

Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células de Kupffer , Fígado , Ativação de Macrófagos , Hepatopatia Gordurosa não Alcoólica , Células de Kupffer/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Morte Celular , Lisossomos/metabolismo , Fagocitose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo
12.
Cells ; 13(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273013

RESUMO

Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.


Assuntos
Encéfalo , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Encéfalo/patologia , Encéfalo/metabolismo , Animais , Lisossomos/metabolismo , Lisossomos/enzimologia , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/enzimologia , Encefalopatias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
13.
Cells ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273068

RESUMO

ER-phagy is a specialized form of autophagy, defined by the lysosomal degradation of ER subdomains. ER-phagy has been implicated in relieving the ER from misfolded proteins during ER stress upon activation of the unfolded protein response (UPR). Here, we identified an essential role for the ER chaperone calnexin in regulating ER-phagy and the UPR in neurons. We showed that chemical induction of ER stress triggers ER-phagy in the somata and axons of primary cultured motoneurons. Under basal conditions, the depletion of calnexin leads to an enhanced ER-phagy in axons. However, upon ER stress induction, ER-phagy did not further increase in calnexin-deficient motoneurons. In addition to increased ER-phagy under basal conditions, we also detected an elevated proteasomal turnover of insoluble proteins, suggesting enhanced protein degradation by default. Surprisingly, we detected a diminished UPR in calnexin-deficient early cortical neurons under ER stress conditions. In summary, our data suggest a central role for calnexin in orchestrating both ER-phagy and the UPR to maintain protein homeostasis within the ER.


Assuntos
Calnexina , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Calnexina/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Autofagia , Neurônios Motores/metabolismo , Axônios/metabolismo , Células Cultivadas , Lisossomos/metabolismo , Neurônios/metabolismo
14.
Theranostics ; 14(13): 4983-5000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267779

RESUMO

Rationale: Neovascular ocular diseases (NODs) represent the leading cause of visual impairment globally. Despite significant advances in anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF), persistent challenges remain prevalent. As a proof-of-concept study, we herein demonstrate the effectiveness of targeted degradation of VEGF with bispecific aptamer-based lysosome-targeting chimeras (referred to as VED-LYTACs). Methods: VED-LYTACs were constructed with three distinct modules: a mannose-6-phosphate receptor (M6PR)-binding motif containing an M6PR aptamer, a VEGF-binding module with an aptamer targeting VEGF, and a linker essential for bridging and stabilizing the two-aptamer structure. The degradation efficiency of VED-LYTACs via the autophagy-lysosome system was examined using an enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining. Subsequently, the anti-angiogenic effects of VED-LYTACs were evaluated using in vitro wound healing assay, tube formation assay, three-dimensional sprouting assay, and ex vivo aortic ring sprouting assay. Finally, the potential therapeutic effects of VED-LYTACs on pathological retinal neovascularization and vascular leakage were tested by employing mouse models of NODs. Results: The engineered VED-LYTACs promote the interaction between M6PR and VEGF, consequently facilitating the translocation and degradation of VEGF through the lysosome. Our data show that treatment with VED-LYTACs significantly suppresses VEGF-induced angiogenic activities both in vitro and ex vivo. In addition, intravitreal injection of VED-LYTACs remarkably ameliorates abnormal vascular proliferation and leakage in mouse models of NODs. Conclusion: Our findings present a novel strategy for targeting VEGF degradation with an aptamer-based LYTAC system, effectively ameliorating pathological retinal angiogenesis. These results suggest that VED-LYTACs have potential as therapeutic agents for managing NODs.


Assuntos
Aptâmeros de Nucleotídeos , Lisossomos , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular , Animais , Aptâmeros de Nucleotídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inibidores da Angiogênese/farmacologia , Angiogênese
15.
Biochemistry (Mosc) ; 89(7): 1300-1312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39218026

RESUMO

To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.


Assuntos
Lisossomos , Macrófagos , Doença de Parkinson , Serina-Treonina Quinases TOR , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Linhagem Celular Tumoral , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Relação Dose-Resposta a Droga , Glucosilceramidase/metabolismo , Glucosilceramidase/antagonistas & inibidores , Naftiridinas
16.
Commun Biol ; 7(1): 1088, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237682

RESUMO

TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosylceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results suggest that TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.


Assuntos
Galactosilceramidase , Metabolismo dos Lipídeos , Lisossomos , Proteínas de Membrana , Camundongos Knockout , Bainha de Mielina , Proteínas do Tecido Nervoso , Animais , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Lisossomos/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Bainha de Mielina/metabolismo , Galactosilceramidase/metabolismo , Galactosilceramidase/genética , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Sulfoglicoesfingolipídeos/metabolismo , Células HEK293
17.
Cell Mol Biol Lett ; 29(1): 116, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237893

RESUMO

Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.


Assuntos
Lisossomos , Doenças Neurodegenerativas , Lisossomos/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Animais , Homeostase , Autofagia
18.
J Nanobiotechnology ; 22(1): 548, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238028

RESUMO

BACKGROUND: Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S. aureus). RESULTS: Using super-resolution fluorescence microscopy and high-voltage electron microscopy, we investigated the nanoscale alterations in mitochondria, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and microtubules of skin cells infected with bacterial EVs. Our results revealed significant mitochondrial fission, loss of cristae, transformation of the ER from tubular to sheet-like structures, and fragmentation of the Golgi apparatus in cells infected with S. aureus EVs, in contrast to the negligible effects observed following S. epidermidis EV infection, probably due to the pathogenic factors in S. aureus EV, including protein A and enterotoxin. These findings indicate that bacterial EVs, particularly those from pathogenic strains, induce profound ultrastructural changes of host cells that can disrupt cellular homeostasis and contribute to infection pathogenesis. CONCLUSIONS: This study advances the understanding of bacterial EV-host cell interactions and contributes to the development of new diagnostic and therapeutic strategies for bacterial infections.


Assuntos
Vesículas Extracelulares , Staphylococcus aureus , Vesículas Extracelulares/metabolismo , Humanos , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Interações Hospedeiro-Patógeno , Infecções Estafilocócicas/microbiologia , Microscopia de Fluorescência , Staphylococcus epidermidis/fisiologia
19.
Mol Cancer ; 23(1): 184, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223601

RESUMO

Great progress has been made in utilizing immune checkpoint blockade (ICB) for the treatment of non-small-cell lung cancer (NSCLC). Therapies targeting programmed cell death protein 1 (PD-1) and its ligand PD-L1, expressed on tumor cells, have demonstrated potential in improving patient survival rates. An unresolved issue involves immune suppression induced by exosomal PD-L1 within the tumor microenvironment (TME), particularly regarding CD8+ T cells. Our study unveiled the crucial involvement of LAMTOR1 in suppressing the exosomes of PD-L1 and promoting CD8+ T cell infiltration in NSCLC. Through its interaction with HRS, LAMTOR1 facilitates PD-L1 lysosomal degradation, thereby reducing exosomal PD-L1 release. Notably, the ability of LAMTOR1 to promote PD-L1 lysosomal degradation relies on a specific ubiquitination site and an HRS binding sequence. The findings suggest that employing LAMTOR1 to construct peptides could serve as a promising strategy for bolstering the efficacy of immunotherapy in NSCLC. The discovery and comprehension of how LAMTOR1 inhibits the release of exosomal PD-L1 offer insights into potential therapeutic strategies for improving immunotherapy. It is imperative to conduct further research and clinical trials to investigate the feasibility and efficacy of targeting LAMTOR1 in NSCLC treatment.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Imunoterapia , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Camundongos , Linhagem Celular Tumoral , Lisossomos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo
20.
Cell Mol Life Sci ; 81(1): 382, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223418

RESUMO

In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.


Assuntos
Lisossomos , Doença de Parkinson , alfa-Sinucleína , Humanos , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Doença de Parkinson/genética , Animais , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA