Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.323
Filtrar
1.
Int J Biol Macromol ; 277(Pt 1): 133683, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084969

RESUMO

Acute hemorrhage is a major cause of death in many emergency cases. Although many hemostatic materials have been studied in recent years, it is still necessary to develop new hemostatic materials with remarkable efficiency, biosafety, convenient preparation, low cost, and good biodegradability. In this work, novel chitosan (CS)/ß-glycerophosphate (ß-GP) composite porous microsphere with a uniform size of 210.00 ± 2.14 µm was fabricated through water-in-water (W/W) emulsion via microencapsulation, which can avoid the use of toxic crosslink chemicals and organic solvents to achieve facile and efficient preparation of microspheres. ß-GP could promote the formation of microspheres by enhancing the hydrogen-bonding interaction between CS chains, which contributed to the macro-porous structure. Owing to their large pore size (6.0 µm) and high specific surface area (37.8 m2/g), the CS/ß-GP microspheres could absorb water quickly and adsorb protein, red blood cells, and platelets through electrostatic forces to promote blood coagulation. Furthermore, the CS/ß-GP microspheres achieved a significantly shortened hemostatic time (45 s) and reduced blood loss (0.03 g) in a rat liver injury model. Rat tail amputation test also showed a satisfactory hemostatic effect. Overall, the green and porous CS/ß-GP microspheres can be used as a facile and topical rapid hemostatic material.


Assuntos
Quitosana , Emulsões , Glicerofosfatos , Hemostáticos , Microesferas , Água , Quitosana/química , Hemostáticos/química , Hemostáticos/farmacologia , Animais , Porosidade , Emulsões/química , Ratos , Água/química , Glicerofosfatos/química , Hemorragia/tratamento farmacológico , Hemorragia/prevenção & controle , Masculino , Ratos Sprague-Dawley
2.
Connect Tissue Res ; 65(4): 313-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982804

RESUMO

AIM: As osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3. METHODS: Due to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (ß-glycerophosphate (ßGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker. RESULTS: ßGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. ßGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing ßGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition. CONCLUSIONS: This work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation.


Assuntos
Glicerofosfatos , Osteoblastos , Osteócitos , Estresse Mecânico , Glicerofosfatos/farmacologia , Glicerofosfatos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Osteócitos/metabolismo , Osteócitos/citologia , Linhagem Celular , Camundongos , Osteogênese/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Ácido Ascórbico/análogos & derivados
3.
Int J Biol Macromol ; 276(Pt 1): 133165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901518

RESUMO

To develop a submucosal injection material with sustained submucosal lifting for endoscopic submucosal dissection (ESD), this study designed and prepared a novel composite thermosensitive hydrogel system with high pH chitosan-polyvinylpyrrolidone-ß-glycerophosphate (HpHCS-PVP-GP). HpHCS improved the injectability of the hydrogels and retained the rapid gelation ability at low concentrations. The modification of PVP significantly improved the stability of low-temperature hydrogel precursor solutions and the integrity of hydrogels formed at 37 °C through hydrogen bonds between PVP and HpHCS. A mathematical model was established using response surface methodology (RSM) to evaluate the synergistic effect of HpHCS, GP, and PVP concentrations on gelation time. This RSM model and submucosal lifting evaluation using in vitro pig esophageal models were used to determine the optimal formula of HpHCS-PVP-GP hydrogels. Although the higher PVP concentration (5 % (w/v)) prolonged gelation time, it improved hydrogel mechanical strength, resulting in better submucosal lifting performance. The experiments of Bama mini pigs showed that the heights of the cushions elevated by the HpHCS-5%PVP-GP hydrogel remained about 80 % 1 h after injection. Repeated injections were avoided, and the hydrogel had no cytotoxicity after electric cutting. Therefore, the HpHCS-PVP-GP thermosensitive hydrogel might be a promising submucosal injection material for ESD.


Assuntos
Quitosana , Ressecção Endoscópica de Mucosa , Hidrogéis , Povidona , Temperatura , Hidrogéis/química , Animais , Suínos , Povidona/química , Quitosana/química , Ressecção Endoscópica de Mucosa/métodos , Injeções , Glicerofosfatos/química
4.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900067

RESUMO

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Assuntos
Fosfatase Alcalina , Materiais Biomiméticos , Calcificação Fisiológica , Animais , Ratos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Glicerofosfatos/química , Poliuretanos/química , Poliuretanos/farmacologia
5.
ACS Biomater Sci Eng ; 10(7): 4359-4373, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842569

RESUMO

The conventional approach for developing any polymeric biomaterial is to follow protocols available in the literature and/or perform trial-and-error runs without a scientific basis. Here, we propose an analysis of a complex overlay of molecular interactions between drugs and polymers that provides a strategic pathway for biomaterial development. First, this work provides an innovative interaction-based method for developing an ocular formulation involving in situ gelling chitosan, gelatin, and glycerophosphate systems. A systematic interaction study is conducted based on the measurement of hydrodynamic radius, zeta potential, and viscosity with the sequential addition of formulation components. The increase in the hydrodynamic radius of the polymer with the addition of drugs can be interpreted as better diffusion of the drug inside the charged polymer chains and vice versa. Based on the knowledge of these interactions, a formulation has been designed that shows better drug release results with extended and sustained release compared to literature protocols, hence accentuating the importance of this study. An in-depth analysis of interactions can lead to a better understanding of the system. Second, we demonstrate the development of two dual-drug biomaterial systems, i.e., an in situ gelling and a liquid formulation at ocular surface temperature from the same polymers, which can be used as an ocular antiglaucoma formulation. Prior knowledge of the interactions between the drug polymers can be used to design a better formulation. The demonstrated application of this interaction-based protocol development can be extended universally to any biomaterial. This would provide a comprehensive idea about the properties and interactions of polymers and drugs, which can also serve as a base/starting point for a new formulation/biomaterial development.


Assuntos
Materiais Biocompatíveis , Quitosana , Glicerofosfatos , Quitosana/química , Glicerofosfatos/química , Materiais Biocompatíveis/química , Viscosidade , Liberação Controlada de Fármacos , Gelatina/química , Polímeros/química , Humanos , Géis/química
6.
Pflugers Arch ; 476(8): 1279-1288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772920

RESUMO

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Glicerofosfatos , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Glicerofosfatos/farmacologia , Glicerofosfatos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Fator de Crescimento de Fibroblastos 23/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Linhagem Celular , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Carbazóis/farmacologia
7.
Int J Biol Macromol ; 270(Pt 1): 132296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740159

RESUMO

Glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (GPDH) are critical in glucose homeostasis. The role of genistein and metformin on these enzymes and glucose production was investigated in C2C12, HepG2, and 3T3-L1 cells. Enzyme kinetics, Real-Time PCR and western blots were performed to determine enzyme activities and expressions of mRNAs and proteins. Glucose production and uptake were also measured in these cells. siRNAs were used to assess their impact on the enzymes and glucose production. Ki values for the compounds were determined using purified GK and GPDH. Genistein decreased GK activity by ∼45 %, while metformin reduced cGPDH and mGPDH activities by ∼32 % and âˆ¼43 %, respectively. Insignificant changes in expressions (mRNAs and proteins) of the enzymes were observed. The compounds showed dose-dependent alterations in glucose production and uptake in these cells. Genistein non-competitively inhibited His-GK activity (Ki 19.12 µM), while metformin non-competitively inhibited His-cGPDH (Ki 75.52 µM) and mGPDH (Ki 54.70 µM) activities. siRNAs transfection showed ∼50 % and âˆ¼35 % decrease in activities of GK and mGPDH and a decrease in glucose production (0.38-fold and 0.42-fold) in 3T3-L1 cells. Considering the differential effects of the compounds, this study may provide insights into the potential therapeutic strategies for type II diabetes mellitus.


Assuntos
Adipócitos , Genisteína , Glucose , Glicerol Quinase , Glicerolfosfato Desidrogenase , Hepatócitos , Metformina , Genisteína/farmacologia , Metformina/farmacologia , Camundongos , Animais , Glicerol Quinase/metabolismo , Glicerol Quinase/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Glicerolfosfato Desidrogenase/genética , Glucose/metabolismo , Células 3T3-L1 , Células Hep G2 , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacologia , Cinética
8.
J Dent ; 146: 105039, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714243

RESUMO

OBJECTIVE: The aim of this work was to evaluate the antibiofilm and anticaries properties of the association of arginine (Arg) with calcium glycerophosphate (CaGP) and fluoride (F). METHODS: An active attachment, polymicrobial biofilm model obtained from saliva and bovine teeth discs were used. After the initial biofilm growth period, the enamel discs were transferred to culture medium. The treatment solutions were added to the culture media to achieve the desired final concentration. The following groups were used: negative control (Control); F (110 ppm F); CaGP (0.05 %); Arg (0.8 %) and their associations (F + CaGP; Arg + F; Arg + CaGP; Arg +F + CaGP). The following analyses were carried out: bacterial viability (total bacteria, aciduric bacteria and mutans streptococci), pH assessment of the spent culture medium, dry weight quantification, evaluation of surface hardness loss (%SH) and subsurface mineral content. Normality and homoscedasticity were tested (Shapiro-Wilk and Levene's test) and the following tests were applied: two-way ANOVA (acidogenicity), Kruskall-Wallis (microbial viability) and one way ANOVA (dry weight, %SH, mineral content). RESULTS: The association Arg + F + CaGP resulted in the lowest surface hardness loss in tooth enamel (-10.9 ± 2.3 %; p < 0.05). Arg +F + CaGP exhibited highest values of subsurface mineral content (10.1 ± 2.9 gHAP/cm3) in comparison to Control and F (p < 0.05). In comparison to Control and F, Arg +F + CaGP promoted the highest reduction in aciduric bacteria and mutans streptococci (5.7 ± 0.4; 4.4 ± 0.5 logCFU/mL, p < 0.05). CONCLUSIONS: The Arg-F-Ca association demonstrated to be the most effective combination in protecting the loss of surface hardness and subsurface mineral content, in addition to controlling important virulence factors of the cariogenic biofilm. CLINICAL SIGNIFICANCE: Our findings provide evidence that the Arg-F-Ca association showed an additive effect, particularly concerning protection against enamel demineralization. The combination of these compounds may be a strategy for patients at high risk of caries.


Assuntos
Arginina , Biofilmes , Cariostáticos , Cárie Dentária , Esmalte Dentário , Fluoretos , Glicerofosfatos , Viabilidade Microbiana , Saliva , Streptococcus mutans , Arginina/farmacologia , Biofilmes/efeitos dos fármacos , Bovinos , Animais , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/microbiologia , Streptococcus mutans/efeitos dos fármacos , Fluoretos/farmacologia , Glicerofosfatos/farmacologia , Cariostáticos/farmacologia , Saliva/microbiologia , Concentração de Íons de Hidrogênio , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Dureza , Humanos , Desmineralização do Dente/prevenção & controle , Desmineralização do Dente/microbiologia , Propriedades de Superfície
9.
Int J Biol Macromol ; 271(Pt 1): 132540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782319

RESUMO

Lipoteichoic acid (LTA) in the gram-positive bacterial cell wall acts as an immunomodulatory factor in host cells. The chemical structures vary among bacterial species and strains, and may be related to biological activities. In our previous work, much higher immunoglobulin A (IgA)-inducing activity was observed in cells of the Apilactobacillus genus (Apilactobacillus kosoi 10HT, Apilactobacillus apinorum JCM 30765T, and Apilactobacillus kunkeei JCM 16173T) than other lactic acid bacteria, and their LTA was responsible for the activity. In the present study, we elucidated the chemical structures of LTA from these Apilactobacillus strains to explore the structure-function relationship of the IgA-inducing activity. The 1H-nuclear magnetic resonance spectra suggested that their LTA structures were similar. All have a poly-glycerolphosphate main chain, which comprised 12 to 20 average number of the repeating units, with partial substitutions of glucose(α1-, glucosyl(α1-2)glucose(α1- (α-linked-kojibiose), and l-lysine at the C-2 hydroxy group of the glycerol residue. l-Lysine is a substituent never seen before in LTA, and is a probable characteristic of the Apilactobacillus genus. Removal of l-lysine residue from LTA by mild alkaline treatment decreased IgA induction in murine Peyer's patch experiments. The novel l-lysine residue in Apilactobacillus LTA plays a crucial role in the remarkably high IgA-inducing activity.


Assuntos
Imunoglobulina A , Lipopolissacarídeos , Lisina , Ácidos Teicoicos , Ácidos Teicoicos/química , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Animais , Lisina/química , Camundongos , Glicerofosfatos/química , Lactobacillaceae/química
10.
Int J Biol Macromol ; 271(Pt 1): 131981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811317

RESUMO

The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with ß-Glycerophosphate (ß-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of ß-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/ß-GP hydrogels, only allowing the release of 60-70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/ß-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/ß-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.


Assuntos
Alginatos , Quitosana , Glicerofosfatos , Polissacarídeos Bacterianos , Quitosana/química , Alginatos/química , Polissacarídeos Bacterianos/química , Glicerofosfatos/química , Animais , Chlorocebus aethiops , Hidrogéis/química , Células Vero , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Temperatura , Microesferas , Injeções , Sobrevivência Celular/efeitos dos fármacos
11.
J Microbiol Biotechnol ; 34(6): 1229-1238, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38755002

RESUMO

This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/ß-Glycerophosphate (ZnO-GO/CS/ß-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/ß-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/ß-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/ß-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/ß-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Grafite , Hidrogéis , Porphyromonas gingivalis , Óxido de Zinco , Quitosana/química , Quitosana/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Porphyromonas gingivalis/efeitos dos fármacos , Grafite/química , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Animais , Hidrogéis/química , Glicerofosfatos/química , Concentração de Íons de Hidrogênio , Temperatura , Testes de Sensibilidade Microbiana , Linhagem Celular , Nanopartículas/química
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673767

RESUMO

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Assuntos
Metabolismo Energético , Osteoblastos , Osteogênese , Estresse Oxidativo , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Linhagem Celular , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacologia , Calcificação Fisiológica , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia
13.
BMC Cardiovasc Disord ; 24(1): 221, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654161

RESUMO

In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium ß-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/ß-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/ß-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by ß-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/ß-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.


Assuntos
Diferenciação Celular , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese , Proteína Smad7 , Via de Sinalização Wnt , Animais , Apoptose , beta Catenina/metabolismo , beta Catenina/genética , Células Cultivadas , Regulação da Expressão Gênica , Glicerofosfatos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/genética , Proteína Smad7/metabolismo , Proteína Smad7/genética , Ratos
14.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632869

RESUMO

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Assuntos
Trifosfato de Adenosina , Arginina , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Células Artificiais/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinase/metabolismo , Glicerol Quinase/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lipídeos/biossíntese , Fosfolipídeos/metabolismo , Redes e Vias Metabólicas
15.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612541

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.


Assuntos
Glicerol , Glicerofosfatos , Simulação de Dinâmica Molecular , Humanos , Ligantes , Glicerol-3-Fosfato O-Aciltransferase , Isoformas de Proteínas , Fosfatos
16.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535456

RESUMO

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Assuntos
Ciclopentanos , Glicerol/análogos & derivados , Glicerofosfatos , Oxilipinas , Rodófitas , Alga Marinha , Galactose , alfa-Galactosidase , Galactanos , Glucose , Difosfato de Uridina
17.
Biochemistry ; 63(8): 1016-1025, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546289

RESUMO

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.


Assuntos
Glicerolfosfato Desidrogenase , Glicerofosfatos , Fosfitos , Glicerolfosfato Desidrogenase/química , NAD/metabolismo , Catálise , Cinética
18.
Adv Healthc Mater ; 13(12): e2303930, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38306618

RESUMO

The rapid and effective healing of skin wounds resulted from severe injuries and full-layer skin defects remains a pressing clinical challenge in contemporary medical practice. The reduction of wound infection and rapid healing is helpful to rebuild and repair skin tissue. Here, a thermosensitive chitosan-based wound dressing hydrogel incorporating ß-glycerophosphate (GP), hydroxy propyl cellulose (HPC), graphene oxide (GO), and platelet-rich plasma (PRP) is developed, which exhibits the dual functions of antibacterial properties and repair promotion. GP and HPC enhance the mechanical properties through forming hydrogen bonding connection, while GO produces local heat under near-infrared light, leading to improved blood circulation and skin recovery. Notably, antibacterial properties against Pseudomonas aeruginosa, and control-release of growth factors from PRP are also achieved based on the system. In vitro experiments reveal its biocompatibility, and ability to promote cell proliferation and migration. Animal experiments demonstrate that the epithelial repair and collagen deposition can be promoted during skin wound healing in Sprague Dawley rats. Moreover, a reduction in wound inflammation levels and the improvement of wound microenvironment are observed, collectively fostering effective wound healing. Therefore, the composite hydrogel system incorporated with GO and PRP can be a promising dressing for the treatment of skin wounds.


Assuntos
Hidrogéis , Plasma Rico em Plaquetas , Ratos Sprague-Dawley , Pele , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Plasma Rico em Plaquetas/química , Hidrogéis/química , Hidrogéis/farmacologia , Pele/lesões , Pele/efeitos dos fármacos , Ratos , Humanos , Quitosana/química , Grafite/química , Glicerofosfatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Masculino , Proliferação de Células/efeitos dos fármacos , Bandagens
19.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409325

RESUMO

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Assuntos
Glicerol , Glicerofosfatos , Metabolismo dos Lipídeos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
20.
FASEB J ; 38(4): e23470, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354035

RESUMO

Vascular calcification is a major risk factor for cardiovascular disease mortality, with a significant prevalence in chronic kidney disease (CKD). Pharmacological inhibition of histone acetyltransferase has been proven to protect against from vascular calcification. However, the role of Histone Deacetylase 2 (HDAC2) and molecular mechanisms in vascular calcification of CKD remains unknown. An in vivo model of CKD was established using mouse fed with a high adenine and phosphate diet, and an in vitro model was produced using human aortic vascular smooth muscle cells (VSMCs) stimulated with ß-glycerophosphate (ß-GP). HDAC2 expression was found to be reduced in medial artery of CKD mice and ß-GP-induced VSMCs. Overexpression of HDAC2 attenuated OPN and OCN upregulation, α-SMA and SM22α downregulation, and calcium deposition in aortas of CKD. The in vitro results also demonstrated that ß-GP-induced osteogenic differentiation was inhibited by HDAC2. Furthermore, we found that HDAC2 overexpression caused an increase in LC3II/I, a decrease in p62, and an induction of autophagic flux. Inhibition of autophagy using its specific inhibitor 3-MA blocked HDAC2's protective effect on osteogenic differentiation in ß-GP-treated VSMCs. Taken together, these results suggest that HDAC2 may protect against vascular calcification by the activation of autophagy, laying out a novel insight for the molecular mechanism in vascular calcification of CKD.


Assuntos
Glicerofosfatos , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Animais , Camundongos , Histona Desacetilase 2/genética , Osteogênese , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA