Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.892
Filtrar
1.
J Agric Food Chem ; 72(30): 17041-17050, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024493

RESUMO

Plasmin-induced protein hydrolysis significantly compromises the stability of ultrahigh-temperature (UHT) milk. ß-Lactoglobulin (ß-Lg) was observed to inhibit plasmin activity, suggesting that there were active sites as plasmin inhibitors in ß-Lg. Herein, plasmin inhibitory peptides were explored from ß-Lg using experimental and computational techniques. The results revealed that increased denaturation of ß-Lg enhanced its affinity for plasmin, leading to a stronger inhibition of plasmin activity. Molecular dynamics simulations indicated that electrostatic and van der Waals forces were the primary binding forces in the ß-Lg/plasmin complex. Denatured ß-Lg increased hydrogen bonding and reduced the binding energy with plasmin. The sites of plasmin bound to ß-Lg were His624, Asp667, and Ser762. Four plasmin inhibitory peptides, QTMKGLDI, EKTKIPAV, TDYKKYLL, and CLVRTPEV, were identified from ß-Lg based on binding sites. These peptides effectively inhibited plasmin activity and enhanced the UHT milk stability. This study provided new insights into the development of novel plasmin inhibitors to improve the stability of UHT milk.


Assuntos
Fibrinolisina , Lactoglobulinas , Leite , Lactoglobulinas/química , Animais , Leite/química , Fibrinolisina/química , Fibrinolisina/metabolismo , Fibrinolisina/antagonistas & inibidores , Bovinos , Temperatura Alta , Armazenamento de Alimentos , Simulação de Dinâmica Molecular , Antifibrinolíticos/química , Peptídeos/química , Peptídeos/farmacologia
3.
FASEB J ; 38(13): e23747, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924451

RESUMO

In this study, fibrinolytic protease was isolated and purified from Perinereis aibuhitensis Grub, and the extraction process was optimized. The properties of the enzyme, such as the amino acid composition, thermal stability, optimal temperature, and pH, were investigated. After detoxification, proteins collected from fresh Clamworm (Perinereis aibuhitensis Grub) were concentrated via ammonium sulfate precipitation. The crude protease was purified using gel filtration resin (Sephadex G-100), anion exchange resin (DEAE-Sepharose FF), and hydrophobic resin (Phenyl Sepharose 6FF). The molecular weight of the protease was determined by polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and optimum pH of the protease were determined. The activity of crude protease in the 40-60% salt-out section was the highest, reaching 467.53 U/mg. The optimal process for purifying crude protein involved the application of DEAE-Sepharose FF and Phenyl Sepharose 6FF, which resulted in the isolation of a single protease known as Asp60-D1-P1 with the highest fibrinolytic activity; additionally, the enzyme activity was measured at 3367.76 U/mg. Analysis by Native-PAGE and SDS-PAGE revealed that the molecular weight of Asp60-D1-P1 was 44.5 kDa, which consisted of two subunits with molecular weights of 6.5 and 37.8 kDa, respectively. The optimum temperature for Asp60-D1-P1 was 40°C, and the optimal pH was 8.0.


Assuntos
Fibrinolisina , Animais , Concentração de Íons de Hidrogênio , Fibrinolisina/metabolismo , Fibrinolisina/isolamento & purificação , Poliquetos/enzimologia , Temperatura , Peso Molecular , Estabilidade Enzimática , Metais/farmacologia , Eletroforese em Gel de Poliacrilamida , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Fibrinolíticos/metabolismo
4.
Clin Exp Med ; 24(1): 107, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776019

RESUMO

Predicting the likelihood vascular events in patients with BCR/ABL1-negative myeloproliferative neoplasms (MPN) is essential for the treatment of the disease. However, effective assessment methods are lacking. Thrombin-antithrombin complex (TAT), plasmin-α2- plasmininhibitor complex (PIC), thrombomodulin (TM), and tissue plasminogen activator-inhibitor complex (t-PAIC) are the new direct indicators for coagulation and fibrinolysis. The aim of this study was to investigate the changes of these four new indicators in thrombotic and hemorrhagic events in BCR/ABL1-negative MPN. The study cohort of 74 patients with BCR/ABL negative myeloproliferative disorders included essential thrombocythemia, polycythemia vera, and primary myelofibrosis (PMF). A panel of 4 biomarkers, including TAT, PIC, TM, and t-PAIC were determined using Sysmex HISCL5000 automated analyzers, whereas fibrin/fibrinogen degradation products (FDP), D-dimer and Antithrombin III (ATIII) were analyzed using Sysmex CS5100 coagulation analyzer. A total of 24 (32.4%) patients experienced thrombotic events and hemorrhagic events occurred in 8 patients (10.8%). Compared to patients without hemorrhagic-thrombotic events, patients with thrombotic events had higher fibrinogen (FIB) level, FDP level and lower ATIII activity, while patients with hemorrhagic events had lower white blood cell count and hemoglobin level, higher FDP level (P < 0.05). Patients with a JAK2V617F mutation were more likely to experience thrombotic events (P < 0.05). In addtion, patients with thrombotic events had higher TAT, PIC, TM, and t-PAIC levels than patients without hemorrhagic-thrombotic events (P < 0.05), whereas patients with hemorrhagic events had a lower median value in TAT and TM (no statistical difference, P > 0.05). Patients with higher TAT, TM and t-PAIC were more likely to experience thrombotic events (P < 0.05), and only TAT was positively correlated with thrombotic events (Spearman r =0.287, P = 0.019). TAT, PIC, TM, and t-PAIC combined with ATIII and FDP have a certain value for predicting thrombosis in patients with BCR/ABL1-negative MPN. These 6 parameters are worth further exploration as predictive factors and prognostic markers for early thrombotic events.


Assuntos
Proteínas de Fusão bcr-abl , Transtornos Mieloproliferativos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Proteínas de Fusão bcr-abl/genética , Trombomodulina/sangue , Fibrinolisina/metabolismo , Fibrinolisina/análise , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Antitrombina III/genética , Trombose , Hemorragia , Relevância Clínica , alfa 2-Antiplasmina , Peptídeo Hidrolases
5.
Front Immunol ; 15: 1390468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726006

RESUMO

Introduction: Relapsing fever (RF) remains a neglected human disease that is caused by a number of diverse pathogenic Borrelia (B.) species. Characterized by high cell densities in human blood, relapsing fever spirochetes have developed plentiful strategies to avoid recognition by the host defense mechanisms. In this scenario, spirochetal lipoproteins exhibiting multifunctional binding properties in the interaction with host-derived molecules are known to play a key role in adhesion, fibrinolysis and complement activation. Methods: Binding of CihC/FbpC orthologs to different human proteins and conversion of protein-bound plasminogen to proteolytic active plasmin were examined by ELISA. To analyze the inhibitory capacity of CihC/FbpC orthologs on complement activation, a microtiter-based approach was performed. Finally, AlphaFold predictions were utilized to identified the complement-interacting residues. Results and discussion: Here, we elucidate the binding properties of CihC/FbpC-orthologs from distinct RF spirochetes including B. parkeri, B. hermsii, B. turicatae, and B. recurrentis to human fibronectin, plasminogen, and complement component C1r. All CihC/FbpC-orthologs displayed similar binding properties to fibronectin, plasminogen, and C1r, respectively. Functional studies revealed a dose dependent binding of plasminogen to all borrelial proteins and conversion to active plasmin. The proteolytic activity of plasmin was almost completely abrogated by tranexamic acid, indicating that lysine residues are involved in the interaction with this serine protease. In addition, a strong inactivation capacity toward the classical pathway could be demonstrated for the wild-type CihC/FbpC-orthologs as well as for the C-terminal CihC fragment of B. recurrentis. Pre-incubation of human serum with borrelial molecules except CihC/FbpC variants lacking the C-terminal region protected serum-susceptible Borrelia cells from complement-mediated lysis. Utilizing AlphaFold2 predictions and existing crystal structures, we mapped the putative key residues involved in C1r binding on the CihC/FbpC orthologs attempting to explain the relatively small differences in C1r binding affinity despite the substitutions of key residues. Collectively, our data advance the understanding of the multiple binding properties of structural and functional highly similar molecules of relapsing fever spirochetes proposed to be involved in pathogenesis and virulence.


Assuntos
Proteínas de Bactérias , Borrelia , Fibrinólise , Interações Hospedeiro-Patógeno , Plasminogênio , Humanos , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Borrelia/imunologia , Borrelia/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Fibrinolisina/metabolismo , Fibronectinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Plasminogênio/metabolismo , Ligação Proteica , Febre Recorrente/imunologia , Febre Recorrente/microbiologia
6.
BMC Biotechnol ; 24(1): 30, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720310

RESUMO

BACKGROUND: Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminescence kit and employed chemiluminescence to detect the tissue plasminogen activator inhibitor complex (t-PAIC), thrombin-antithrombin III complex (TAT), plasmin-α2-plasmin inhibitor complex (PIC) and thrombomodulin (TM), combined with D-dimer and fibrin degradation products (FDP), to investigate their diagnostic potential for venous thrombosis in gastric cancer patients. The study assessed variations in six indicators among gastric cancer patients at different stages. RESULTS: The t-PAIC reagent showed LOD is 1.2 ng/mL and a linear factor R greater than 0.99. The reagents demonstrated accurate results, with all accuracy deviations being within 5%. The intra-batch and inter-batch CVs for the t-PAIC reagent were both within 8%. The correlation coefficient R between this method and Sysmex was 0.979. Gastric cancer patients exhibited elevated levels of TAT, PIC, TM, D-D, FDP compared to the healthy population, while no significant difference was observed in t-PAIC. In the staging of gastric cancer, patients in III-IV stages exhibit higher levels of the six markers compared to those in I-II stages. The ROC curve indicates an enhancement in sensitivity and specificity of the combined diagnosis of four or six indicators. CONCLUSION: Our chemiluminescence assay performs comparably to Sysmex's method and at a reduced cost. The use of multiple markers, including t-PAIC, TM, TAT, PIC, D-D, and FDP, is superior to the use of single markers for diagnosing VTE in patients with malignant tumors. Gastric cancer patients should be screened for the six markers to facilitate proactive prophylaxis, determine the most appropriate treatment timing, ameliorate their prognosis, decrease the occurrence of venous thrombosis and mortality, and extend their survival.


Assuntos
Medições Luminescentes , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Masculino , Pessoa de Meia-Idade , Medições Luminescentes/métodos , Feminino , Idoso , Antitrombina III/metabolismo , Antitrombina III/análise , Trombomodulina/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , alfa 2-Antiplasmina/metabolismo , alfa 2-Antiplasmina/análise , Adulto , Fibrinolisina/metabolismo , Fibrinolisina/análise , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/sangue , Peptídeo Hidrolases
7.
Stroke ; 55(7): 1923-1926, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818720

RESUMO

BACKGROUND: AST-004, a small molecule agonist of the adenosine A1 and A3 receptors, is a potential cerebroprotectant for patients with acute stroke and is currently in clinical trials. Drug-drug interactions are critically important to assess in the context of acute stroke care. Lytic therapy with tPA (tissue-type plasminogen activator)-induced plasmin formation (alteplase) is the only available pharmacotherapy for acute stroke. Consequently, it is imperative to evaluate potential interactions between AST-004 and tPAs such as alteplase and tenecteplase. METHODS: The interactions between AST-004 and tPAs were evaluated in 3 ways in preparation for AST-004 phase II trials. First, the metabolic stability of AST-004 was determined in the presence of alteplase and plasmin. Second, the potential for AST-004 to influence the thrombolytic efficacy of alteplase and tenecteplase was evaluated with an in vitro assay system utilizing a fluorogenic substrate of plasmin. Finally, the potential for AST-004 to influence the thrombolytic efficacy of alteplase was also determined with an in vitro thrombolysis assay of human blood thrombi. RESULTS: Neither alteplase nor plasmin affected the stability of AST-004 in vitro. In 2 different in vitro systems, AST-004 had no effect on the ability of alteplase or tenecteplase to generate plasmin, and AST-004 had no effect on the thrombolytic efficacy of alteplase to lyse blood clots in human blood. CONCLUSIONS: These studies indicate that there will be no interactions between AST-004 and tPAs such as alteplase or tenecteplase in patients with stroke undergoing thrombolytic therapy.


Assuntos
Interações Medicamentosas , Fibrinolíticos , Tenecteplase , Ativador de Plasminogênio Tecidual , Ativador de Plasminogênio Tecidual/uso terapêutico , Humanos , Tenecteplase/uso terapêutico , Fibrinolíticos/uso terapêutico , Fibrinolíticos/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/uso terapêutico , Receptor A3 de Adenosina/metabolismo , Fibrinolisina , Acidente Vascular Cerebral/tratamento farmacológico , Receptor A1 de Adenosina/metabolismo
8.
Colloids Surf B Biointerfaces ; 240: 113987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795586

RESUMO

Residual plasmin activity in whole ultra-instantaneous UHT (UI-UHT) milk causes rapid fat rise during storage, seriously affecting consumers' purchase intentions. In this work, the molecular mechanisms underlying fat destabilization in whole UI-UHT milk by added plasmin were investigated based on the hydrolysis behavior of interfacial proteins. By using SDS-PAGE and peptidomic analysis, we found that the hydrolysis of interfacial proteins by plasmin led to a decrease in the amount and coverage of interfacial proteins and an increase in zeta-potential value, causing the flocculation and coalescence of fat globules. Moreover, the hydrolysis pattern varied in different categories of interfacial proteins by plasmin. In total, 125 peptides in all samples were identified. Plasmin tended to hydrolyze most major milk fat globule membrane (MFGM) proteins into protein fragments (>10 kDa) rather than peptides (<10 kDa). In contrast, peptides derived from caseins were more preferentially identified within a relatively short incubation time. It was the co-hydrolysis of caseins and some major MFGM proteins as anchors that destroyed the stability of MFGM. Furthermore, studies on the effect of trilayer membrane structure remaining at the interface on the hydrolysis rate of major MFGM proteins by plasmin revealed that ADPH and BTN were very sensitive to plasmin action, while PAS 7 was very resistant to plasmin action. Overall, membrane structure reduced the susceptibility of some major MFGM proteins to plasmin and provided protective effects. Therefore, this study provided important insights into the hydrolysis behavior of interfacial proteins in whole UI-UHT milk induced by plasmin.


Assuntos
Fibrinolisina , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Leite , Fibrinolisina/química , Fibrinolisina/metabolismo , Animais , Glicoproteínas/química , Leite/química , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Glicolipídeos/química , Hidrólise
9.
Biochem Pharmacol ; 225: 116280, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38735446

RESUMO

The pivotal role of human endometrial stromal cells (hESCs) in the development of endometriosis lies in their ability to adopt a pro-invasive and proinflammatory profile upon migration to areas outside the uterus. However, the molecular mechanisms involved in these events remain unclear. In this study, we investigated how angiotensin II (Ang II) affects the plasminogen-plasmin system in hESCs, and the mechanisms underlying cell proliferation, migration, matrix degradation, and inflammation. Precursors, receptors, and peptidases involved in angiotensin metabolism increased significantly in Ang II-treated hESCs. The expression and activity of tissue (tPA)- and urokinase (uPA)- type plasminogen activators and the receptor for uPA (uPAR) were induced in the presence of Ang II. The up-regulation of tPA-uPA/uPAR pathway significantly contributes to heightened plasmin production both on the surface of hESCs and in their conditioned media. As a result, the plasmin generation induced by Ang II enhances the degradation of fibrin and matrix proteins, while also boosting hESC viability, proliferation, and migration through the up-regulation of growth factor expression. Notably, Ang II-induced hESC migration was dependent on the generation of active plasmin on cell surface. Ang II regulates oxidative and inflammatory signalling in hESCs primarily via NADPH oxidase and through the up-regulation of proinflammatory cytokines and adhesion molecules. Interestingly, Ang II receptor (AT1R) blockage, decreased plasmin generation, tPA-uPA/uPAR expression and hESC migration. Our results suggest that Ang II/AT1R axis regulates hESC proliferation and migration through tPA-uPA/uPAR pathway activation and plasmin generation. We propose the Ang II/AT1R axis as a potential target for endometriosis treatment.


Assuntos
Angiotensina II , Movimento Celular , Endométrio , Matriz Extracelular , Fibrinolisina , Plasminogênio , Receptor Tipo 1 de Angiotensina , Transdução de Sinais , Células Estromais , Humanos , Feminino , Endométrio/metabolismo , Endométrio/citologia , Endométrio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Fibrinolisina/metabolismo , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Angiotensina II/farmacologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Plasminogênio/metabolismo , Células Cultivadas , Inflamação/metabolismo
10.
Curr Opin Hematol ; 31(5): 245-250, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723202

RESUMO

PURPOSE OF REVIEW: Von Willebrand factor (VWF) plays a pivotal role in primary hemostasis. A Disintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) is primarily responsible for cleaving ultra-large VWF multimers into smaller, less adhesive forms. However, plasmin has also been shown to cleave VWF multimers. This proteolytic cleavage of VWF results in a decreased multimer size and, hence, a lower VWF activity. This review aims to present a comprehensive overview of the involvement of plasmin-mediated VWF proteolysis in (micro)thrombosis. RECENT FINDINGS: Plasmin-mediated VWF proteolysis has been suggested to play a role in various pathologies involving microthrombosis in combination with an imbalance in VWF antigen levels and ADAMTS13 activity, as well as activation of the fibrinolytic system, but quantitative assays to demonstrate this were lacking. Recently, a V H H-based bioassay was developed designed specifically to quantify plasmin-cleaved VWF (cVWF). The novel ELISA assay holds significant promise for gaining further insights into the clinical relevance of plasmin-mediated VWF proteolysis in several pathologies. Furthermore, local plasmin activation at the site of microthrombosis has been shown to be a promising treatment strategy by degrading VWF-rich microthrombi. SUMMARY: Plasmin-mediated proteolysis of VWF is observed during microthrombosis; however, it remains unclear whether it impacts disease severity. A novel ELISA method to detect cVWF will improve our understanding of the clinical role of plasmin-mediated VWF degradation.


Assuntos
Proteína ADAMTS13 , Fibrinolisina , Proteólise , Fator de von Willebrand , Humanos , Fibrinolisina/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/metabolismo , Trombose/metabolismo
11.
Sci Rep ; 14(1): 9073, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643218

RESUMO

ADAMTS13, a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13, regulates the length of Von Willebrand factor (VWF) multimers and their platelet-binding activity. ADAMTS13 is constitutively secreted as an active protease and is not inhibited by circulating protease inhibitors. Therefore, the mechanisms that regulate ADAMTS13 protease activity are unknown. We performed an unbiased proteomics screen to identify ligands of ADAMTS13 by optimizing the application of BioID to plasma. Plasma BioID identified 5 plasma proteins significantly labeled by the ADAMTS13-birA* fusion, including VWF and plasminogen. Glu-plasminogen, Lys-plasminogen, mini-plasminogen, and apo(a) bound ADAMTS13 with high affinity, whereas micro-plasminogen did not. None of the plasminogen variants or apo(a) bound to a C-terminal truncation variant of ADAMTS13 (MDTCS). The binding of plasminogen to ADAMTS13 was attenuated by tranexamic acid or ε-aminocaproic acid, and tranexamic acid protected ADAMTS13 from plasmin degradation. These data demonstrate that plasminogen is an important ligand of ADAMTS13 in plasma by binding to the C-terminus of ADAMTS13. Plasmin proteolytically degrades ADAMTS13 in a lysine-dependent manner, which may contribute to its regulation. Adapting BioID to identify protein-interaction networks in plasma provides a powerful new tool to study protease regulation in the cardiovascular system.


Assuntos
Fibrinolisina , Ácido Tranexâmico , Fibrinolisina/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13 , Proteínas ADAM/metabolismo , Ligantes , Plasminogênio/metabolismo
12.
JCI Insight ; 9(8)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502232

RESUMO

Joint injury is associated with risk for development of osteoarthritis (OA). Increasing evidence suggests that activation of fibrinolysis is involved in OA pathogenesis. However, the role of the fibrinolytic pathway is not well understood. Here, we showed that the fibrinolytic pathway, which includes plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator (uPA), and the uPA receptor (uPAR), was dysregulated in human OA joints. Pharmacological inhibition of plasmin attenuated OA progression after a destabilization of the medial meniscus in a mouse model whereas genetic deficiency of plasmin activator inhibitor, or injection of plasmin, exacerbated OA. We detected increased uptake of uPA/uPAR in mouse OA joints by microPET/CT imaging. In vitro studies identified that plasmin promotes OA development through multiple mechanisms, including the degradation of lubricin and cartilage proteoglycans and induction of inflammatory and degradative mediators. We showed that uPA and uPAR produced inflammatory and degradative mediators by activating the PI3K, 3'-phosphoinositide-dependent kinase-1, AKT, and ERK signaling cascades and activated matrix metalloproteinases to degrade proteoglycan. Together, we demonstrated that fibrinolysis contributes to the development of OA through multiple mechanisms and suggested that therapeutic targeting of the fibrinolysis pathway can prevent or slow development of OA.


Assuntos
Modelos Animais de Doenças , Fibrinolisina , Fibrinólise , Osteoartrite , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Ativador de Plasminogênio Tipo Uroquinase , Animais , Camundongos , Humanos , Fibrinolisina/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL , Plasminogênio/metabolismo , Transdução de Sinais , Camundongos Knockout
13.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456079

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Assuntos
Meningite , Streptococcus suis , Animais , Humanos , Suínos , Plasminogênio/metabolismo , Barreira Hematoencefálica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Translocação Bacteriana , Fibrinolisina/metabolismo , Sítios de Ligação , Fosfopiruvato Hidratase/química
14.
Am J Kidney Dis ; 84(2): 205-214.e1, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452919

RESUMO

RATIONALE & OBJECTIVE: Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN: Multicenter cohort study. SETTING & PARTICIPANTS: 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS: The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME: Progression to ESKD. ANALYTICAL APPROACH: Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS: Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS: Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS: Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY: Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.


Assuntos
Biomarcadores , Progressão da Doença , Falência Renal Crônica , Plasminogênio , Humanos , Masculino , Feminino , Biomarcadores/urina , Plasminogênio/urina , Plasminogênio/metabolismo , Pessoa de Meia-Idade , Adulto , Falência Renal Crônica/urina , Estudos de Coortes , Glomerulosclerose Segmentar e Focal/urina , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulonefrite por IGA/urina , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite Membranosa/urina , Glomerulonefrite Membranosa/diagnóstico , Fibrinolisina/urina , Fibrinolisina/metabolismo
15.
Biophys J ; 123(5): 610-621, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38356261

RESUMO

We modify a three-dimensional multiscale model of fibrinolysis to study the effect of plasmin-mediated degradation of fibrin on tissue plasminogen activator (tPA) diffusion and fibrinolysis. We propose that tPA is released from a fibrin fiber by simple kinetic unbinding, as well as by "forced unbinding," which occurs when plasmin degrades fibrin to which tPA is bound. We show that, if tPA is bound to a small-enough piece of fibrin that it can diffuse into the clot, then plasmin can increase the effective diffusion of tPA. If tPA is bound to larger fibrin degradation products (FDPs) that can only diffuse along the clot, then plasmin can decrease the effective diffusion of tPA. We find that lysis rates are fastest when tPA is bound to fibrin that can diffuse into the clot, and slowest when tPA is bound to FDPs that can only diffuse along the clot. Laboratory experiments confirm that FDPs can diffuse into a clot, and they support the model hypothesis that forced unbinding of tPA results in a mix of FDPs, such that tPA bound to FDPs can diffuse both into and along the clot. Regardless of how tPA is released from a fiber, a tPA mutant with a smaller dissociation constant results in slower lysis (because tPA binds strongly to fibrin), and a tPA mutant with a larger dissociation constant results in faster lysis.


Assuntos
Fibrinolisina , Fibrinólise , Fibrinolisina/metabolismo , Fibrinolisina/farmacologia , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Fibrina/metabolismo , Cinética , Plasminogênio/metabolismo
16.
BMJ Open ; 14(2): e077012, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309757

RESUMO

INTRODUCTION: Inflammation is a hallmark of cancer and is involved in tumour growth and dissemination. However, the hallmarks of cancer are also the hallmarks of wound healing, and modulating the wound inflammatory response and immune contexture in relation to cancer surgery may represent effective targets of therapies.Repurposing anti-inflammatory drugs in a cancer setting has gained increasing interest in recent years. Interestingly, the known and thoroughly tested antifibrinolytic drug tranexamic acid reduces the risk of bleeding, but it is also suggested to play important roles in anti-inflammatory pathways, improving wound healing and affecting anti-carcinogenic mechanisms.As a novel approach, we will conduct a randomised controlled trial using perioperative treatment with tranexamic acid, aiming to prevent early relapses by >10% for patients with melanoma. METHODS AND ANALYSIS: Design: investigator-initiated parallel, two-arm, randomised, blinded, Danish multicentre superiority trial. PATIENTS: ≥T2 b melanoma and eligible for sentinel lymph node biopsy (n=1204).Project drug: tranexamic acid or placebo. TREATMENT: before surgery (intravenous 15 mg/kg) and daily (peroral 1000 mg x 3) through postoperative day 4. PRIMARY OUTCOME: relapse within 2 years after surgery.Primary analysis: risk difference between the treatment arms (χ2 test). SECONDARY OUTCOMES: postoperative complications, adverse events and survival.Inclusion period: summer 2023 to summer 2026. ETHICS AND DISSEMINATION: The trial will be initiated during the summer of 2023 and is approved by the National Committee on Health Research Ethics, the Danish Medicine Agency, and registered under the Data Protection Act. The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. Patients included in the study will adhere to normal Danish treatment protocols and standards of care, and we expect only mild and temporary side effects. Positive and negative results will be published in peer-reviewed journals, with authorships adhering to the Vancouver rules. TRIAL REGISTRATION NUMBER: NCT05899465; ClinicalTrials.gov Identifier.


Assuntos
Melanoma , Ácido Tranexâmico , Humanos , Ácido Tranexâmico/uso terapêutico , Fibrinolisina , Prognóstico , Plasminogênio , Melanoma/tratamento farmacológico , Melanoma/cirurgia , Anti-Inflamatórios , Dinamarca , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
17.
Sci Rep ; 14(1): 3105, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326494

RESUMO

Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Animais , Humanos , Camundongos , Ratos , Complemento C5a/metabolismo , Fibrinolisina/metabolismo , Inflamação , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais
18.
19.
Eur J Drug Metab Pharmacokinet ; 49(2): 191-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367175

RESUMO

BACKGROUND: Hemophilia A patients are treated with factor (F) VIII prophylactically to prevent bleeding. In general, dosage and frequency are based on pharmacokinetic measurements. Ideally, an alternative dose adjustment can be based on the hemostatic potential, measured with a thrombin generation assay (TGA), like the Nijmegen hemostasis assay. OBJECTIVE: The objective of this study was to investigate the predicted performance of a previously developed pharmacokinetic-pharmacodynamic model for FVIII replacement therapy, relating FVIII dose and FVIII activity levels with thrombin and plasmin generation parameters. METHODS: Pharmacokinetic and pharmacodynamic measurements were obtained from 29 severe hemophilia A patients treated with pdVWF/FVIII concentrate (Haemate P®). The predictive performance of the previously developed pharmacokinetic-pharmacodynamic model was evaluated using nonlinear mixed-effects modeling (NONMEM). When predictions of FVIII activity or TGA parameters were inadequate [median prediction error (MPE) > 20%], a new model was developed. RESULTS: The original pharmacokinetic model underestimated clearance and was refined based on a two-compartment model. The pharmacodynamic model displays no bias in the observed normalized thrombin peak height and normalized thrombin potential (MPE of 6.83% and 7.46%). After re-estimating pharmacodynamic parameters, EC50 and Emax values were relatively comparable between the original model and this group. Prediction of normalized plasmin peak height was inaccurate (MPE 58.9%). CONCLUSION: Our predictive performance displayed adequate thrombin pharmacodynamic predictions of the original model, but a new pharmacokinetic model was required. The pharmacodynamic model is not factor specific and applicable to multiple factor concentrates. A prospective study is needed to validate the impact of the FVIII dosing pharmacodynamic model on bleeding reduction in patients.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/farmacologia , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Trombina/uso terapêutico , Fator de von Willebrand/uso terapêutico , Fibrinolisina/uso terapêutico , Hemorragia
20.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393039

RESUMO

Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bß- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.


Assuntos
Fibrinolisina , Poliquetos , Animais , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Serina Proteases/metabolismo , Poliquetos/metabolismo , Fibrinolíticos/química , Temperatura , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA