Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164.378
Filtrar
2.
Genes Chromosomes Cancer ; 63(4): e23239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656544

RESUMO

Myxoid leiomyosarcoma (MLS) is a rare but well-documented tumor that often portends a poor prognosis compared to the conventional leiomyosarcoma. This rare sarcoma has been reported in the uterus, external female genitalia, soft tissue, and other locations. However, a definite rectal MLS has not been reported. Recently five cases of MLS were reported to harbor PLAG1 fusions (TRPS1::PLAG1, RAD51B::PLAG1, and TRIM13::PLAG1). In this report, we present a case of rectal MLS with a novel MIR143HG::PLAG1 fusion detected by RNA next-generation sequencing.


Assuntos
Proteínas de Ligação a DNA , Leiomiossarcoma , Neoplasias Retais , Humanos , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Neoplasias Retais/genética , Neoplasias Retais/patologia , Proteínas de Ligação a DNA/genética , Feminino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética
3.
Zhonghua Yi Xue Za Zhi ; 104(16): 1410-1417, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644292

RESUMO

Objective: To investigate the genetic and expression characteristics of transcription factor IIH (TFIIH) in pre-initiationcomplex in prostate cancer (PCa) and its relationship with prostate cancer progression. Methods: Analyzing the expression characteristics and clinical signification of TFIIH subunits about 495 cases of PCa and 52 cases of adjacent cancer in The Cancer Genome Atlas-Prostate adenocarcinoma (TCGA-PRAD) database. PCa microarray chip was used to verify the correlation between the key factor General Transcription Factor IIH Subunit 4 (GTF2H4) in TFIIH and clinical features. Results: The 495 patients with PCa were (61.01±6.82) years old.The mRNA expression of ERCC3、GTF2H4 and MNAT1 were high in PCa tissues with GS≥8(P<0.05). The expression of GTF2H4 and MNAT1 were relevant to the pathological stages(P<0.05). High expression of GTF2H4 has higher biochemical recurrence (BCR) rate in PCa patients(HR=2.47, 95%CI:1.62-3.77, P<0.001), which has better predictive effect of BCR in PCa patients(The 3rd, 5th, and 7th year AUC all>0.7) than other subunits, and it has been verified in four additional databases. Single-factor Cox regression analysis showed that GTF2H4 were risk factors for BCR (HR=2.470, 95%CI:1.620-3.767, P<0.001) and GTF2H5 were protective factors(HR=0.506,95%CI: 0.336-0.762, P=0.001). The results of immunohistochemical staining showed that the protein expression of GTF2H4 was correlated with the clinical features of PCa patients.The differences of the above results were statistically significant. Conclusion: GTF2H4, the key factor of TFIIH, is highly expressed in PCa and indicates a poor prognosis.


Assuntos
Biologia Computacional , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Prognóstico , Pessoa de Meia-Idade , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Idoso , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFII/genética
4.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664021

RESUMO

Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade , Longevidade , Camundongos Transgênicos , Proteínas Mitocondriais , Músculo Esquelético , Fatores de Transcrição , Animais , Camundongos , Músculo Esquelético/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Longevidade/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Metabolômica/métodos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Regulação da Expressão Gênica
5.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664429

RESUMO

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
6.
Sci Rep ; 14(1): 9550, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664461

RESUMO

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Genética , Recombinação Homóloga , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 1/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
7.
Discov Med ; 36(183): 816-826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665029

RESUMO

BACKGROUND: Pneumonia is a prevalent respiratory ailment involving complex physiological and pathological mechanisms. The tripartite motif containing 27 (TRIM27) plays a crucial role in regulating inflammation mechanisms. Therefore, the purpose of this study is to further explore the therapeutic potential of TRIM27 in pneumonia, based on its regulatory mechanisms in inflammation and autophagy. METHODS: This study established a mouse pneumonia animal model through lipopolysaccharide (LPS) administration, designating it as the LPS model group. Subsequently, adenovirus-mediated TRIM27 overexpression was implemented in the animals of the LPS model group, creating the TRIM27 treatment group. After a 7-day treatment period, lung tissues from the mice were collected. Various techniques, including immunohistochemistry, quantitative reverse transcription PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay (ELISA), and electron microscopy were utilized to analyze the impact of TRIM27 overexpression on inflammatory factors, oxidative stress, autophagy, and inflammatory processes in pulmonary tissues. Finally, an in vitro LPS cell model was established, and the effects of TRIM27 overexpression and autophagy inhibition on inflammatory cytokines and autophagosomes in LPS-induced inflammatory cells were examined through RT-qPCR and immunofluorescence techniques. RESULTS: The research findings demonstrate a significant reduction in the elevated levels of interleukin-6 (IL-6), IL-1ß, and Tumor necrosis factor-alpha (TNF-α) induced by LPS with TRIM27 overexpression (p < 0.01). Conversely, the autophagy inhibitor 3-Methyladenine (3-MA) diminished the effects induced by TRIM27 overexpression. Moreover, TRIM27 overexpression enhanced the expression of Microtubule-associated protein 1A/1B light chain 3 (LC3) II/I and Beclin-1 proteins in mice subjected to LPS stimulation (p < 0.01), while reducing the expression of the p62 protein (p < 0.01). The addition of 3-MA, however, decreased Beclin-1 expression and inhibited autophagy (p < 0.01). Additionally, TRIM27 overexpression decreased the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved caspase-1, IL-1ß, and Gasdermin D N-terminal fragment (GSDMD-N) proteins in LPS-stimulated mice (p < 0.05). TRIM27 overexpression also decreased the levels of malondialdehyde (MDA), Activating Transcription Factor 6 (ATF6), and C/EBP-homologous protein (CHOP), while increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in mice exposed to LPS (p < 0.01). CONCLUSION: The induction of TRIM27 overexpression emerges as a potential and effective pneumonia treatment. The underlying mechanism may involve inducing protective autophagy, thereby reducing oxidative stress and cell pyroptosis.


Assuntos
Adenina/análogos & derivados , Autofagia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Lipopolissacarídeos , Pneumonia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Camundongos , Pneumonia/patologia , Pneumonia/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Adenina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética
8.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643172

RESUMO

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Genoma
9.
Cell Rep ; 43(4): 114064, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578830

RESUMO

Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Transporte/metabolismo , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína BRCA1/metabolismo , Transdução de Sinais , Proteínas Nucleares/metabolismo , Fibroblastos/metabolismo , Pontos de Checagem do Ciclo Celular
10.
Cell Rep ; 43(4): 114024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581679

RESUMO

Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.


Assuntos
Replicação do DNA , Proteína Homóloga a MRE11 , Animais , Camundongos , Proteína Homóloga a MRE11/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Desdiferenciação Celular , Proteínas de Ligação a DNA/metabolismo
11.
Cell Rep ; 43(4): 114072, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581680

RESUMO

Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.


Assuntos
60533 , Tolerância Central , Células Epiteliais , Proteínas do Tecido Nervoso , Timo , Fatores de Transcrição , Animais , Células Epiteliais/metabolismo , Timo/citologia , Timo/metabolismo , Timo/imunologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tolerância a Antígenos Próprios
12.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607586

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Imunoterapia , Neoplasias Renais/genética , Neoplasias Renais/terapia , Instabilidade Cromossômica , Microambiente Tumoral , Rad51 Recombinase , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
13.
PLoS One ; 19(4): e0298080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635657

RESUMO

Inclusions containing TAR DNA binding protein 43 (TDP-43) are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). One of the disease-specific features of TDP-43 inclusions is the aberrant phosphorylation of TDP-43 at serines 409/410 (pS409/410). Here, we developed rabbit monoclonal antibodies (mAbs) that specifically detect pS409/410-TDP-43 in multiple model systems and FTD/ALS patient samples. Specifically, we identified three mAbs (26H10, 2E9 and 23A1) from spleen B cell clones that exhibit high specificity and sensitivity to pS409/410-TDP-43 peptides in an ELISA assay. Biochemical analyses revealed that pS409/410 of recombinant TDP-43 and of exogenous 25 kDa TDP-43 C-terminal fragments in cultured HEK293T cells are detected by all three mAbs. Moreover, the mAbs detect pS409/410-positive TDP-43 inclusions in the brains of FTD/ALS patients and mouse models of TDP-43 proteinopathy by immunohistochemistry. Our findings indicate that these mAbs are a valuable resource for investigating TDP-43 pathology both in vitro and in vivo.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Proteinopatias TDP-43 , Camundongos , Animais , Humanos , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/patologia , Anticorpos Monoclonais , Células HEK293 , Proteínas de Ligação a DNA/genética
14.
Neuron ; 112(8): 1197-1199, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636451

RESUMO

In this issue of Neuron, Ke et al.1 report a novel non-canonical interaction between 14-3-3θ and TDP-43 that impacts loss-of-function and gain-of-toxic pathology in TDP-43 proteinopathies. The authors further provide proof of principle for a 14-3-3θ-targeted gene therapy to reduce TDP-43-induced deficits in transgenic TDP-43 mutant mice.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Proteinopatias TDP-43 , Animais , Camundongos , Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Camundongos Transgênicos , Neurônios/patologia , Proteinopatias TDP-43/genética
15.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637827

RESUMO

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Masculino , Criança , Animais , Camundongos , Humanos , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes Mitocondriais , Proteínas de Homeodomínio/genética , Cerebelo/metabolismo , Autopsia , Metilação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Oncol Rep ; 51(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639175

RESUMO

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non­SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.


Assuntos
Proteínas de Ciclo Celular , Complexos Multiproteicos , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Mitose , Neoplasias/genética
17.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655849

RESUMO

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Assuntos
Mutação , Humanos , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Conformação Proteica , Multimerização Proteica
18.
Nat Commun ; 15(1): 3441, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658550

RESUMO

Hyperuricemia is an essential causal risk factor for gout and is associated with cardiometabolic diseases. Given the limited contribution of East Asian ancestry to genome-wide association studies of serum urate, the genetic architecture of serum urate requires exploration. A large-scale cross-ancestry genome-wide association meta-analysis of 1,029,323 individuals and ancestry-specific meta-analysis identifies a total of 351 loci, including 17 previously unreported loci. The genetic architecture of serum urate control is similar between European and East Asian populations. A transcriptome-wide association study, enrichment analysis, and colocalization analysis in relevant tissues identify candidate serum urate-associated genes, including CTBP1, SKIV2L, and WWP2. A phenome-wide association study using polygenic risk scores identifies serum urate-correlated diseases including heart failure and hypertension. Mendelian randomization and mediation analyses show that serum urate-associated genes might have a causal relationship with serum urate-correlated diseases via mediation effects. This study elucidates our understanding of the genetic architecture of serum urate control.


Assuntos
Estudo de Associação Genômica Ampla , Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/sangue , Hiperuricemia/genética , Hiperuricemia/sangue , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Gota/genética , Gota/sangue , Predisposição Genética para Doença , População Branca/genética , Análise da Randomização Mendeliana , Herança Multifatorial , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/sangue , Hipertensão/genética , Hipertensão/sangue , Transcriptoma , Masculino , Proteínas de Ligação a DNA/genética
19.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658677

RESUMO

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Assuntos
Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Indóis , Neoplasias Pulmonares , Mutação , Pirimidinas , Fatores de Transcrição , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Gefitinibe/farmacologia , Via de Sinalização Hippo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas
20.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644371

RESUMO

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Assuntos
Vacina BCG , Proteínas de Bactérias , Proteínas de Ligação a DNA , Interferon gama , Mycobacterium tuberculosis , Processamento de Proteína Pós-Traducional , Humanos , Interferon gama/metabolismo , Proteínas de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Ilhas de CpG , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...