Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199.666
Filtrar
1.
Methods Mol Biol ; 2848: 269-297, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240529

RESUMO

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Assuntos
Biotinilação , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Mapeamento de Interação de Proteínas , Fatores de Transcrição , Mapeamento de Interação de Proteínas/métodos , Humanos , Fatores de Transcrição/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Ligação Proteica , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Endonucleases , Enzimas Multifuncionais
2.
Methods Mol Biol ; 2856: 327-339, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283462

RESUMO

Disentangling the relationship of enhancers and genes is an ongoing challenge in epigenomics. We present STARE, our software to quantify the strength of enhancer-gene interactions based on enhancer activity and chromatin contact data. It implements the generalized Activity-by-Contact (gABC) score, which allows predicting putative target genes of candidate enhancers over any desired genomic distance. The only requirement for its application is a measurement of enhancer activity. In addition to regulatory interactions, STARE calculates transcription factor (TF) affinities on gene level. We illustrate its usage on a public single-cell data set of the human heart by predicting regulatory interactions on cell type level, by giving examples on how to integrate them with other data modalities, and by constructing TF affinity matrices.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Epigenômica , Software , Humanos , Cromatina/genética , Cromatina/metabolismo , Epigenômica/métodos , Epigenoma , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Biologia Computacional/métodos
3.
Gene ; 932: 148880, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181273

RESUMO

It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas Repressoras , Fatores de Transcrição , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Animais
4.
Int J Biol Sci ; 20(11): 4190-4208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247819

RESUMO

Inhibitor of growth 5 (ING5) has been reported to be involved in the malignant progression of cancers. Ursolic acid (UA) has shown remarkable antitumor effects. However, its antitumor mechanisms regarding of ING5 in hepatocellular carcinoma (HCC) remain unclear. Herein, we found that UA significantly suppressed the proliferation, anti-apoptosis, migration and invasion of HCC cells. In addition, ING5 expression in HCC cells treated with UA was obviously downregulated in a concentration- and time-dependent manner. Additionally, the pro-oncogenic role of ING5 was confirmed in HCC cells. Further investigation revealed that UA exerted antitumor effects on HCC by inhibiting ING5-mediated activation of PI3K/Akt pathway. Notably, UA could also reverse sorafenib resistance of HCC cells by suppressing the ING5-ACC1/ACLY-lipid droplets (LDs) axis. UA abrogated ING5 transcription and downregulated its expression by reducing SRF and YY1 expression and the SRF-YY1 complex formation. Alb/JCPyV T antigen mice were used for in vivo experiments since T antigen upregulated ING5 expression by inhibiting the ubiquitin-mediated degradation and promoting the T antigen-SRF-YY1-ING5 complex-associated transcription. UA suppressed JCPyV T antigen-induced spontaneous HCC through inhibiting ING5-mediated PI3K/Akt signaling pathway. These findings suggest that UA has the dual antitumoral functions of inhibiting hepatocellular carcinogenesis and reversing sorafenib resistance of HCC cells through targeting ING5, which could serve as a potential therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sorafenibe , Triterpenos , Ácido Ursólico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Animais , Humanos , Camundongos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Apoptose/efeitos dos fármacos , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo
5.
Int J Biol Sci ; 20(11): 4146-4161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247829

RESUMO

Ferroptosis has attracted extensive interest from cancer researchers due to its substantial potential as a therapeutic target. The role of LATS2, a core component of the Hippo pathway cascade, in ferroptosis initiation in hepatoblastoma (HB) has not yet been investigated. Furthermore, the underlying mechanism of decreased LATS2 expression remains largely unknown. In the present study, we demonstrated decreased LATS2 expression in HB and that LATS2 overexpression inhibits HB cell proliferation by inducing ferroptosis. Increased LATS2 expression reduced glycine and cysteine concentrations via the ATF4/PSAT1 axis. Physical binding between YAP1/ATF4 and the PSAT1 promoter was confirmed through ChIP‒qPCR. Moreover, METTL3 was identified as the writer of the LATS2 mRNA m6A modification at a specific site in the 5' UTR. Subsequently, YTHDF2 recognizes the m6A modification site and recruits the CCR4-NOT complex, leading to its degradation by mRNA deadenylation. In summary, N6-methyladenosine modification of LATS2 facilitates its degradation. Reduced LATS2 expression promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Targeting LATS2 is a potential strategy for HB therapy.


Assuntos
Fator 4 Ativador da Transcrição , Adenosina , Ferroptose , Hepatoblastoma , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Hepatoblastoma/metabolismo , Hepatoblastoma/genética , Hepatoblastoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Ferroptose/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Proliferação de Células , Camundongos Nus , Camundongos , Regulação Neoplásica da Expressão Gênica , Metiltransferases
6.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250534

RESUMO

During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.


Assuntos
Transdiferenciação Celular , Fatores de Transcrição , Trofoblastos , Humanos , Trofoblastos/citologia , Trofoblastos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Blastocisto/metabolismo , Blastocisto/citologia , Gravidez , Diferenciação Celular
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(8): 841-847, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39238408

RESUMO

OBJECTIVE: To investigate the protective effects and mechanisms of targeted inhibition of type 3 deiodinase (Dio3) on skeletal muscle mitochondria in sepsis. METHODS: (1) In vivo experiments: adeno-associated virus (AAV) was employed to specifically target Dio3 expression in the anterior tibial muscle of rats, and a septic rat model was generated using cecal ligation and puncture (CLP). The male Sprague-Dawley (SD) rats were divided into shNC+Sham group, shD3+Sham group, shNC+CLP group, and shD3+CLP group by random number table method, with 8 rats in each group. After CLP modeling, tibial samples were collected and Western blotting analysis was conducted to assess the protein levels of Dio3, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), and silence-regulatory protein 1 (SIRT1). Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was utilized to examine mRNA expression of genes including thyroid hormone receptors (THRα, THRß), monocarboxylate transporter 10 (MCT10), mitochondrial DNA (mtDNA), and PGC1α. Transmission electron microscopy was employed to investigate mitochondrial morphology. (2) In vitro experiments: involved culturing C2C12 myoblasts, interfering with Dio3 expression using lentivirus, and constructing an endotoxin cell model by treating cells with lipopolysaccharide (LPS). C2C12 cells were divided into shNC group, shD3 group, shNC+LPS group, and shD3+LPS group. Immunofluorescence colocalization analysis was performed to determine the intracellular distribution of PGC1α. Co-immunoprecipitation assay coupled with Western blotting was carried out to evaluate the acetylation level of PGC1α. RESULTS: (1) In vivo experiments: compared with the shNC+Sham group, the expression of Dio3 protein in skeletal muscle of the shNC+CLP group was significantly increased (Dio3/ß-Tubulin: 3.32±0.70 vs. 1.00±0.49, P < 0.05), however, there was no significant difference in the shD3+Sham group. Dio3 expression in the shD3+CLP group was markedly reduced relative to the shNC+CLP group (Dio3/ß-Tubulin: 1.42±0.54 vs. 3.32±0.70, P < 0.05). Compared with the shNC+CLP group, the expression of T3-regulated genes in the shD3+CLP group were restored [THRα mRNA (2-ΔΔCt): 0.67±0.05 vs. 0.33±0.01, THRß mRNA (2-ΔΔCt): 0.94±0.05 vs. 0.67±0.02, MCT10 mRNA (2-ΔΔCt): 0.65±0.03 vs. 0.57±0.02, all P < 0.05]. Morphology analysis by electron microscopy suggested prominent mitochondrial damage in the skeletal muscle of the shNC+CLP group, while the shD3+CLP group exhibited a marked improvement. Compared with the shNC+Sham group, the shNC+CLP group significantly reduced the number of mitochondria (cells/HP: 10.375±1.375 vs. 13.750±2.063, P < 0.05), while the shD3+CLP group significantly increased the number of mitochondria compared to the shNC+CLP group (cells/HP: 11.250±2.063 vs. 10.375±1.375, P < 0.05). The expression of mtDNA in shNC+CLP group was markedly reduced compared with shNC+Sham group (copies: 0.842±0.035 vs. 1.002±0.064, P < 0.05). Although no difference was detected in the mtDNA expression between shD3+CLP group and shNC+CLP group, but significant increase was found when compared with the shD3+Sham group (copies: 0.758±0.035 vs. 0.474±0.050, P < 0.05). In the shD3+CLP group, PGC1α expression was significantly improved at both transcriptional and protein levels relative to the shNC+CLP group [PGC1α mRNA (2-ΔΔCt): 1.49±0.13 vs. 0.68±0.06, PGC1α/ß-Tubulin: 0.76±0.02 vs. 0.62±0.04, both P < 0.05]. (2) In vitro experiments: post-24-hour LPS treatment of C2C12 cells, the cellular localization of PGC1α became diffuse; interference with Dio3 expression promoted PGC1α translocation to the perinuclear region and nucleus. Moreover, the acetylated PGC1α level in the shD3+LPS group was significantly lower than that in the shNC+LPS group (acetylated PGC1α/ß-Tubulin: 0.59±0.01 vs. 1.24±0.01, P < 0.05), while the expression of the deacetylating agent SIRT1 was substantially elevated following Dio3 inhibition (SIRT1/ß-Tubulin: 1.04±0.04 vs. 0.58±0.03, P < 0.05). When SIRT1 activity was inhibited by using EX527, PGC1α protein expression was notably decreased compared to the shD3+LPS group (PGC1α/ß-Tubulin: 0.92±0.03 vs. 1.58±0.03, P < 0.05). CONCLUSIONS: Inhibition of Dio3 in skeletal muscle reduced the acetylation of PGC1α through activating SIRT1, facilitating nuclear translocation of PGC1α, thereby offering protection against sepsis-induced skeletal muscle mitochondrial damage.


Assuntos
Iodeto Peroxidase , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos Sprague-Dawley , Sepse , Animais , Masculino , Ratos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sepse/metabolismo , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Músculo Esquelético/metabolismo , Sirtuína 1/metabolismo , Mitocôndrias Musculares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Sci Rep ; 14(1): 20576, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39242697

RESUMO

Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Odorantes , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Odorantes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Genes de Plantas , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Cor
9.
BMC Biol ; 22(1): 189, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218853

RESUMO

BACKGROUND: The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS: We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS: Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.


Assuntos
Neurônios , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Neurônios/metabolismo , Cerebelo/metabolismo , Diferenciação Celular/genética , Genoma , Regulação da Expressão Gênica no Desenvolvimento
10.
Plant Mol Biol ; 114(5): 95, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223419

RESUMO

The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas , Oryza , Proteínas de Plantas , Fatores de Transcrição , Giberelinas/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Invest Ophthalmol Vis Sci ; 65(11): 4, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39230995

RESUMO

Purpose: We assessed whether NICD1 expression, c-MYC expression, and P63 expression by immunohistochemistry (IHC) correlate with prognosis and high-risk clinicopathological features in lacrimal gland adenoid cystic carcinoma (ACC). Methods: Records of patients with lacrimal gland ACC who underwent surgery between 1998 to 2018 were reviewed. Clinicopathologic and treatment data were collected. Tumor tissues were subjected to light microscopy and IHC. Results: Of 43 patients treated during the study period, 21 had archived tumor tissue available and were included. The median age at diagnosis was 47 years, and 13 patients (62%) were male. Thirteen patients (62%) had T2 disease, and none had nodal or distant metastasis at diagnosis. Tumors were positive for NICD1 expression in eight cases (38%), c-MYC expression in eight (38%), and P63 expression in 11 (52%). Positive NICD1 expression was associated with predominantly solid (vs. cribriform/tubular) pattern (P < 0.001), treatment with orbital exenteration (vs. eye-sparing surgery) (P = 0.008), local recurrence (P = 0.047), and death (P = 0.012). Negative P63 expression was associated with predominantly solid pattern (P = 0.001), local recurrence (P = 0.012), distant metastasis (P = 0.001), and death (P = 0.035). A higher percentage of tumor cells staining for c-MYC was associated with presence of perineural invasion (P = 0.036). Positive NICD1 expression was associated with worse disease-free survival (hazard ratio, 6.27; 95% CI, 1.29-30.46), whereas positive P63 expression was associated with better disease-free survival (hazard ratio, 0.03; 95% CI, 0.0002-0.26). Conclusions: IHC for NICD1 and P63 should be considered in lacrimal gland ACC because of their prognostic value and potential as treatment targets.


Assuntos
Biomarcadores Tumorais , Carcinoma Adenoide Cístico , Neoplasias Oculares , Doenças do Aparelho Lacrimal , Proteínas Proto-Oncogênicas c-myc , Receptor Notch1 , Humanos , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Carcinoma Adenoide Cístico/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Prognóstico , Doenças do Aparelho Lacrimal/metabolismo , Doenças do Aparelho Lacrimal/patologia , Doenças do Aparelho Lacrimal/diagnóstico , Idoso , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Oculares/metabolismo , Neoplasias Oculares/patologia , Neoplasias Oculares/diagnóstico , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Receptor Notch1/metabolismo , Imuno-Histoquímica , Adulto Jovem , Proteínas de Membrana , Fatores de Transcrição , Proteínas Supressoras de Tumor
12.
Curr Genet ; 70(1): 15, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235627

RESUMO

Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs. In this work we show that SWI/SNF subunits Swi1, Swi2, Snf5 and Snf6 can bind to activation domains of Ino2 required for expression of phospholipid biosynthetic genes in yeast. We identify an activator binding domain (ABD) of ATPase Swi2 and show that this ABD is functionally dispensable, presumably because ABDs of other SWI/SNF subunits can compensate for the loss. In contrast, mutational characterization of the ABD of the Swi2-related ATPase Sth1 revealed that some conserved basic and hydrophobic amino acids within this domain are essential for the function of Sth1. While ABDs of Swi2 and Sth1 define separate functional protein domains, mapping of an ABD within ATPase Ino80 showed co-localization with its HSA domain also required for binding actin-related proteins. Comparative interaction studies finally demonstrated that several unrelated activators each exhibit a specific binding pattern with ABDs of Swi2, Sth1 and Ino80.


Assuntos
Adenosina Trifosfatases , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Ativação Transcricional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica , Domínios Proteicos , Proteínas Nucleares , Proteínas de Ciclo Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos
14.
Stem Cell Res Ther ; 15(1): 274, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218930

RESUMO

BACKGROUND: Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS: To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS: We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS: This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas , Próstata , Fatores de Transcrição , Humanos , Próstata/citologia , Próstata/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Organoides/metabolismo , Organoides/citologia , Camundongos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Animais , Linhagem Celular
15.
Cancer Res ; 84(17): 2792-2805, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39228255

RESUMO

Neoantigen-based immunotherapy is an attractive potential treatment for previously intractable tumors. To effectively broaden the application of this approach, stringent biomarkers are crucial to identify responsive patients. ARID1A, a frequently mutated subunit of SWI/SNF chromatin remodeling complex, has been reported to determine tumor immunogenicity in some cohorts; however, mutations and deletions of ARID1A are not always linked to clinical responses to immunotherapy. In this study, we investigated immunotherapeutic responses based on ARID1A status in targeted therapy-resistant cancers. Mouse and human BRAFV600E melanomas with or without ARID1A expression were transformed into resistant to vemurafenib, an FDA-approved specific BRAFV600E inhibitor. Anti-PD-1 antibody treatment enhanced antitumor immune responses in vemurafenib-resistant ARID1A-deficient tumors but not in ARID1A-intact tumors or vemurafenib-sensitive ARID1A-deficient tumors. Neoantigens derived from accumulated somatic mutations during vemurafenib resistance were highly expressed in ARID1A-deficient tumors and promoted tumor immunogenicity. Furthermore, the newly generated neoantigens could be utilized as immunotherapeutic targets by vaccines. Finally, targeted therapy resistance-specific neoantigen in experimental human melanoma cells lacking ARID1A were validated to elicit T-cell receptor responses. Collectively, the classification of ARID1A-mutated tumors based on vemurafenib resistance as an additional indicator of immunotherapy response will enable a more accurate prediction to guide cancer treatment. Furthermore, the neoantigens that emerge with therapy resistance can be promising therapeutic targets for refractory tumors. Significance: Chemotherapy resistance promotes the acquisition of immunogenic neoantigens in ARID1A-deficient tumors that confer sensitivity to immune checkpoint blockade and can be utilized for developing antitumor vaccines, providing strategies to improve immunotherapy efficacy.


Assuntos
Antígenos de Neoplasias , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Melanoma , Fatores de Transcrição , Vemurafenib , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/terapia , Imunoterapia/métodos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/imunologia , Linhagem Celular Tumoral , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Terapia de Alvo Molecular/métodos , Camundongos Endogâmicos C57BL
16.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39221968

RESUMO

The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.


Assuntos
Células Endoteliais , Linfangiogênese , Vasos Linfáticos , Fatores de Transcrição , Animais , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citologia , Camundongos , Linfangiogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Movimento Celular/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mesoderma/metabolismo , Mesoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula
17.
Mol Biol Rep ; 51(1): 950, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222158

RESUMO

BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Células Estreladas do Fígado , Lisofosfolipídeos , Transdução de Sinais , Esfingosina , Fatores de Transcrição , Proteínas de Sinalização YAP , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Humanos , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Linhagem Celular , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Via de Sinalização Hippo
18.
Physiol Plant ; 176(5): e14496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223912

RESUMO

The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Solanum lycopersicum , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Mutação/genética , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Pathol Clin Res ; 10(5): e70001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283755

RESUMO

Lineage plasticity in small cell lung carcinoma (SCLC) causes therapeutic difficulties. This study aimed to investigate the pathological findings of plasticity in SCLC, focusing on combined SCLC, and elucidate the involvement of YAP1 and other transcription factors. We analysed 100 surgically resected SCLCs through detailed morphological observations and immunohistochemistry for YAP1 and other transcription factors. Component-by-component next-generation sequencing (n = 15 pairs) and immunohistochemistry (n = 35 pairs) were performed on the combined SCLCs. Compared with pure SCLCs (n = 65), combined SCLCs (n = 35) showed a significantly larger size, higher expression of NEUROD1, and higher frequency of double-positive transcription factors (p = 0.0009, 0.04, and 0.019, respectively). Notably, 34% of the combined SCLCs showed morphological mosaic patterns with unclear boundaries between the SCLC and its partner. Combined SCLCs not only had unique histotypes as partners but also represented different lineage plasticity within the partner. NEUROD1-dominant combined SCLCs had a significantly higher proportion of adenocarcinomas as partners, whereas POU2F3-dominant combined SCLCs had a significantly higher proportion of squamous cell carcinomas as partners (p = 0.006 and p = 0.0006, respectively). YAP1 expression in SCLC components was found in 80% of combined SCLCs and 62% of pure SCLCs, often showing mosaic-like expression. Among the combined SCLCs with component-specific analysis, the identical TP53 mutation was found in 10 pairs, and the identical Rb1 abnormality was found in 2 pairs. On immunohistochemistry, the same abnormal p53 pattern was found in 34 pairs, and Rb1 loss was found in 24 pairs. In conclusion, combined SCLC shows a variety of pathological plasticity. Although combined SCLC is more plastic than pure SCLC, pure SCLC is also a phenotypically plastic tumour. The morphological mosaic pattern and YAP1 mosaic-like expression may represent ongoing lineage plasticity. This study also identified the relationship between transcription factors and partners in combined SCLC. Transcription factors may be involved in differentiating specific cell lineages beyond just 'neuroendocrine'.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Imuno-Histoquímica , Linhagem da Célula , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Mutação , Plasticidade Celular , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
20.
Physiol Plant ; 176(5): e14531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284740

RESUMO

Flowering, the change from vegetative development to the reproductive phase, represents a crucial and intricate stage in the life cycle of plants, which is tightly controlled by both internal and external factors. In this study, we investigated the effect of Ascophyllum nodosum extract (ANE) on the flowering time of Arabidopsis. We found that a 0.1% concentration of ANE induced flowering in Arabidopsis, accompanied by the upregulation of key flowering time genes: FT (FLOWERING LOCUS T), SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), and LFY (LEAFY). Further investigation showed that ANE specifically promotes flowering through the MIR156-mediated age pathway. ANE treatment resulted in the repression of negative regulator genes, MIR156, while simultaneously enhancing the expression of positive regulator genes, including SPLs and MIR172. This, in turn, led to the downregulation of AP2-like genes, which are known as floral repressors. It is worth noting that ANE did not alleviate the late flowering phenotype of MIR156-overexpressing plants and spl mutants. Furthermore, ANE-derived fucoidan mimics the function of sugars in regulating MIR156, closely mirroring the effects induced by ANE treatments. It suppresses the transcript levels of MIR156 and AP2-like genes while inducing those of SPLs and MIR172, thereby reinforcing the involvement of fucoidan in the control of flowering by ANE. In summary, our results demonstrate that ANE induces flowering by modulating the MIR156-SPL module within the age pathway, and this effect is mediated by fucoidan.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascophyllum , Flores , Regulação da Expressão Gênica de Plantas , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Extratos Vegetais/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA