Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.689
Filtrar
1.
Sci Total Environ ; 951: 175867, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216751

RESUMO

Nitrogen (N) and carbon (C) inputs substantially affect soil microbial functions. However, the influences of long-term N and C additions on soil microbial resource limitation and heterotrophic respiration-fundamental microbial functional traits-remain unclear, impeding the understanding of how soil C dynamics respond to global change. In this study, the responses of soil microbial resource limitation and heterotrophic respiration (Rh) to 7-year N and biochar (BC) additions in a subtropical Moso bamboo (Phyllostachys edulis) plantation were investigated. We used eight treatments: Control, no N and BC addition; N30, 30 kg N (ammonium nitrate)·hm-2·a-1; N60, 60 kg N·hm-2·a-1; N90, 90 kg N·hm-2·a-1; BC20, 20 t BC (originating from Moso bamboo chips) hm-2; N30 + BC20, 30 kg N·hm-2·a-1 + 20 t BC hm-2; N60 + BC20, 60 kg N·hm-2·a-1 + 20 t BC hm-2; and N90 + BC20, 90 kg N·hm-2·a-1 + 20 t BC hm-2. Soil microbes were co-limited by N and phosphorus (P) and not limited by C in the control treatments. Long-term N addition enhanced soil microbial N and P limitation but significantly reduced soil Rh by 15.1 %-20.0 % relative to that in the control treatments. BC amendment alleviated soil microbial N and P limitation and significantly decreased C use efficiency by 10.9 %-42.1 % but increased Rh by 33.6 %-91.6 % in the long-term N-free and N-supplemented treatments (P < 0.05). Soil C- and N-acquisition enzyme activities were the dominant drivers of soil microbial resource limitation. Furthermore, microbial resource limitation was a more reliable predictor of Rh than soil resources or microbial biomass. The results suggested that long-term N and BC additions affect Rh by regulating microbial resource limitation, highlighting its significance in understanding soil C cycling under environmental change.


Assuntos
Carvão Vegetal , Florestas , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Solo/química , Fertilizantes , Processos Heterotróficos
2.
Bioresour Technol ; 408: 131226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111401

RESUMO

Heterotrophic nitrification (HN) bacteria use organic carbon sources to remove ammonia nitrogen (NH4+-N); however, the mechanisms of carbon and nitrogen metabolism are unknown. To understand this mechanism, HN functional microbial communities named MG and MA were enriched with glucose and sodium acetate, respectively. The NH4+-N removal efficiencies were 98.87 % and 98.91 %, with 88.06 % and 69.77 % nitrogen assimilation for MG and MA at 22 h and 10 h, respectively. Fungi (52.86 %) were more competitive in MG, and bacteria (99.99 %) were dominant in MA. Metagenomic and metabolomic analyses indicated that HN might be a signaling molecule (NO) in the production and detoxification processes when MG metabolizes glucose (amo, hao, and nosZ were not detected). MA metabolizes sodium acetate to produce less energy and promotes nitrogen oxidation reduction; however, genes (hao, hox, and NOS2) were not detected. These results suggest that NO and energy requirements induce microbial HN.


Assuntos
Bactérias , Glucose , Metabolômica , Metagenômica , Nitrificação , Nitrogênio , Acetato de Sódio , Acetato de Sódio/farmacologia , Nitrogênio/metabolismo , Glucose/metabolismo , Metagenômica/métodos , Bactérias/metabolismo , Bactérias/genética , Processos Heterotróficos , Fungos/metabolismo , Fungos/genética
3.
Water Res ; 264: 122239, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137482

RESUMO

Biological nitrogen (N) fixation is a pivotal N source in N-deficient ecosystems. The Qinghai‒Tibet Plateau (QTP) region, which is assumed to be N limited and suboxic, is an ideal habitat for diazotrophs. However, the diazotrophic communities and associated N fixation rates in these high-altitude alpine permafrost QTP rivers remain largely unknown. Herein, we examined diazotrophic communities in the sediment and biofilm of QTP rivers via the nitrogenase (nifH) gene sequencing and assessed their N fixing activities via a 15N isotope incubation assay. Strikingly, anaerobic heterotrophic diazotrophs, such as sulfate- and iron-reducing bacteria, had emerged as dominant N fixers. Remarkably, the nifH gene abundance and N fixation rates increased with altitude, and the average nifH gene abundance (2.57 ± 2.60 × 108 copies g-1) and N fixation rate (2.29 ± 3.36 nmol N g-1d-1) surpassed that documented in most aquatic environments (nifH gene abundance: 1.31 × 105 ∼ 2.57 × 108 copies g-1, nitrogen fixation rates: 2.34 × 10-4 ∼ 4.11 nmol N g-1d-1). Such distinctive heterotrophic diazotrophic communities and high N fixation potential in QTP rivers were associated with low-nitrogen, abundant organic carbon and unique C:N:P stoichiometries. Additionally, the significant presence of psychrophilic bacteria within the diazotrophic communities, along with the enhanced stability and complexity of the diazotrophic networks at higher altitudes, clearly demonstrate the adaptability of diazotrophic communities to extreme cold and high-altitude conditions in QTP rivers. We further determined that altitude, coupled with organic carbon and phosphorus, was the predominant driver shaping diazotrophic communities and their N-fixing activities. Overall, our study reveals high N fixation potential in N-deficient QTP rivers, which provides novel insights into nitrogen dynamics in alpine permafrost rivers.


Assuntos
Fixação de Nitrogênio , Pergelissolo , Rios , Tibet , Processos Heterotróficos , Bactérias/metabolismo , Nitrogênio
4.
Bull Math Biol ; 86(10): 123, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196435

RESUMO

Subaerial biofilms (SAB) are intricate microbial communities living on terrestrial surfaces, of interest in a variety of contexts including cultural heritage preservation, microbial ecology, biogeochemical cycling, and biotechnology. Here we propose a mathematical model aimed at better understanding the interplay between cyanobacteria and heterotrophic bacteria, common microbial SAB constituents, and their mutual dependence on local environmental conditions. SABs are modeled as thin mixed biofilm-liquid water layers sitting on stone. A system of ordinary differential equations regulates the dynamics of key SAB components: cyanobacteria, heterotrophs, polysaccharides and decayed biomass, as well as cellular levels of organic carbon, nitrogen and energy. These components are interconnected through a network of energetically dominant metabolic pathways, modeled with limitation terms reflecting the impact of biotic and abiotic factors. Daily cylces of temperature, humidity, and light intensity are considered as input model variables that regulate microbial activity by influencing water availability and metabolic kinetics. Relevant physico-chemical processes, including pH regulation, further contribute to a description of the SAB ecology. Numerical simulations explore the dynamics of SABs in a real-world context, revealing distinct daily activity periods shaped by water activity and light availability, as well as longer time scale survivability conditions. Results also suggest that heterotrophs could play a substantial role in decomposing non-volatile carbon compounds and regulating pH, thus influencing the overall composition and stability of the biofilm.


Assuntos
Biofilmes , Simulação por Computador , Cianobactérias , Conceitos Matemáticos , Modelos Biológicos , Processos Fototróficos , Biofilmes/crescimento & desenvolvimento , Processos Fototróficos/fisiologia , Cianobactérias/fisiologia , Cianobactérias/metabolismo , Biomassa , Processos Heterotróficos/fisiologia , Interações Microbianas/fisiologia , Fenômenos Fisiológicos Bacterianos
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115410

RESUMO

Heterotrophic microbes are central to organic matter degradation and transformation in marine sediments. Currently, most investigations of benthic microbiomes do not differentiate between processes in the porewater and on the grains and, hence, only show a generalized picture of the community. This limits our understanding of the structure and functions of sediment microbiomes. To address this problem, we fractionated sandy surface sediment microbial communities from a coastal site in Isfjorden, Svalbard, into cells associated with the porewater, loosely attached to grains, and firmly attached to grains; we found dissimilar bacterial communities and metabolic activities in these fractions. Most (84%-89%) of the cells were firmly attached, and this fraction comprised more anaerobes, such as sulfate reducers, than the other fractions. The porewater and loosely attached fractions (3% and 8%-13% of cells, respectively) had more aerobic heterotrophs. These two fractions generally showed a higher frequency of dividing cells, polysaccharide (laminarin) hydrolysis rates, and per-cell O2 consumption than the firmly attached cells. Thus, the different fractions occupy distinct niches within surface sediments: the firmly attached fraction is potentially made of cells colonizing areas on the grain that are protected from abrasion, but might be more diffusion-limited for organic matter and electron acceptors. In contrast, the porewater and loosely attached fractions are less resource-limited and have faster growth. Their cell numbers are kept low possibly through abrasion and exposure to grazers. Differences in community composition and activity of these cell fractions point to their distinct roles and contributions to carbon cycling within surface sediments.


Assuntos
Bactérias , Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Svalbard , Processos Heterotróficos , RNA Ribossômico 16S/genética
6.
Bioresour Technol ; 410: 131232, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117247

RESUMO

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce ß-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum ß-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.


Assuntos
Técnicas de Cocultura , Luz , Sesquiterpenos Policíclicos , Synechococcus , Yarrowia , Técnicas de Cocultura/métodos , Sesquiterpenos Policíclicos/metabolismo , Synechococcus/metabolismo , Synechococcus/crescimento & desenvolvimento , Yarrowia/metabolismo , Sacarose/metabolismo , Sesquiterpenos/metabolismo , Processos Heterotróficos , Processos Autotróficos
7.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39122657

RESUMO

Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.


Assuntos
Dióxido de Carbono , Metano , Interações Microbianas , Compostos Orgânicos Voláteis , Metano/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Dióxido de Carbono/metabolismo , Methylomonas/metabolismo , Methylomonas/genética , Proteômica , Proteoma , Processos Heterotróficos , Oxigenases/metabolismo , Oxigenases/genética
8.
J Hazard Mater ; 477: 135293, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094307

RESUMO

Perchlorate (ClO4-) mainly exists in the form of ammonium perchlorate in industrial production. However, the degradation mechanisms of different concentrations of ammonium nitrogen (NH4+-N) and ClO4- mixed pollutants in the environment are not well understood. This study aims to explore the potential of different types of carbon sources for ClO4- and NH4+-N biodegradation. Experimental results showed that the concentration and type of carbon sources are decisive to simultaneous removal of NH4+-N and ClO4-. Under condition of C(COD)/C(ClO4-) ratio of 21.15 ± 4.40, the simultaneously removal efficiency of ClO4- and NH4+-N in acetate (Ace) was relatively higher than that in methanol (Met). C(NH4+-N)/C(ClO4-) ratio of 9.66 ± 0.51 and C(COD)/C(ClO4-) ratio of 2.51 ± 0.87 promoted ClO4- reduction in glucose-C (Glu-C). However, high concentration of Glu could cause pH decrease (from 7.57 to 4.59), thereby inhibiting ClO4- reduction. High-throughput sequencing results indicated that Proteobacteria and Bacteroidetes have made a major contribution to the simultaneous removal of NH4+-N and ClO4-. They are two representative bacterial phyla for participating in both ClO4- reduction and denitrification. Notably, the abundance of main ClO4- degrading bacteria (such as Proteobacteria, Chloroflexi, and Firmicutes) significantly increased by 528.57 % in Glu-C. It can be inferred that the concentration of carbon source and NH4+-N were the most important factors determining the removal efficiency of ClO4- by influencing changes in the core microbial community. This study will provide new techniques and mechanistic insights for the simultaneous removal of mixed ClO4- and nitrogen pollutants, which can also provide theoretical support for innovation in future biological treatment processes.


Assuntos
Biodegradação Ambiental , Carbono , Percloratos , Poluentes Químicos da Água , Percloratos/metabolismo , Carbono/química , Carbono/metabolismo , Poluentes Químicos da Água/metabolismo , Processos Heterotróficos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Glucose/metabolismo
9.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138161

RESUMO

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.


Assuntos
Archaea , Bactérias , Biomassa , Mudança Climática , Processos Heterotróficos , Oceanos e Mares , Archaea/metabolismo , Bactérias/metabolismo , Água do Mar/microbiologia , Cadeia Alimentar , Animais , Zooplâncton/metabolismo , Carbono/metabolismo , Peixes , Células Procarióticas/metabolismo
10.
Extremophiles ; 28(3): 36, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060419

RESUMO

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful. This study describes the development of a novel chemically defined growth medium for M. sedula. Initial experiments with commonly used complex casein-derived media sources deciphered Casamino Acids as the most suitable foundation for further development. The imitation of the amino acid composition of Casamino Acids in basal Brock medium delivered the first chemically defined medium. We could further simplify the medium to 5 amino acids based on the respective specific substrate uptake rates. This first defined cultivation medium for M. sedula allows advanced genetic engineering and more controlled bioprocess development approaches for this highly interesting archaeon.


Assuntos
Meios de Cultura , Sulfolobaceae/metabolismo , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/genética , Processos Heterotróficos
11.
Water Environ Res ; 96(8): e11086, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39082880

RESUMO

Conventional wastewater treatment plants (WWTPs) are not designed for the abatement of antibiotics, and their effluents are one of the main entry ways of these emerging contaminants to the aquatic environment, causing major concern due to their toxicity, persistence, and bioaccumulation. When wastewater containing antibiotics enters the bioreactor, they can impact microbial communities of the activated sludge, affecting biodegradation processes of organic matter and nutrients. There is scarce information about the effect of activated carbon on the activated sludge within the bioreactor in presence of antibiotics. In light of this, the effect of representative antibiotics, ciprofloxacin (CIP), nalidixic acid (NAL), and erythromycin (ERY), on the performance of a conventional activated sludge of a WWTP was analyzed by respirometry with and without activated carbon. NAL and ERY negatively affected the net heterotrophic biomass growth rate (r'x,H), with reduction percentages of 26%-90% and 31%-81%, respectively. The addition of activated carbon mitigated this effect, especially for ERY, with increments of even 8% in the r'x,H for the hybrid process when working with 5 ppm of ERY and 80 ppm of activated carbon compared with the value in the absence of antibiotic and activated carbon. This effect was attributed to the enhanced retention of ERY, in comparison to NAL, on the surface of the activated carbon, probably due to its higher molecular size and affinity towards the activated carbon (log Kow = 3.06). This effect was more marked at low sludge retention times (below 8 days). PRACTITIONER POINTS: Ciprofloxacin (CIP), nalidixic acid (NAL), and erythromycin (ERY) were studied. NAL and ERY exerted negative impact on heterotrophic growth rate. Effect of antibiotics on microorganisms in the presence of activated carbon was studied. Activated carbon was mainly relevant for ERY due to its adsorption retention. Enhancement by activated carbon was more significant at low sludge retention times.


Assuntos
Antibacterianos , Carvão Vegetal , Esgotos , Antibacterianos/farmacologia , Antibacterianos/química , Carvão Vegetal/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Processos Heterotróficos , Eritromicina/farmacologia
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39046282

RESUMO

Although the green alga Chlamydomonas reinhardtii has long served as a reference organism, few studies have interrogated its role as a primary producer in microbial interactions. Here, we quantitatively investigated C. reinhardtii's capacity to support a heterotrophic microbe using the established coculture system with Mesorhizobium japonicum, a vitamin B12-producing α-proteobacterium. Using stable isotope probing and nanoscale secondary ion mass spectrometry (nanoSIMS), we tracked the flow of photosynthetic fixed carbon and consequent bacterial biomass synthesis under continuous and diurnal light with single-cell resolution. We found that more 13C fixed by the alga was taken up by bacterial cells under continuous light, invalidating the hypothesis that the alga's fermentative degradation of starch reserves during the night would boost M. japonicum heterotrophy. 15NH4 assimilation rates and changes in cell size revealed that M. japonicum cells reduced new biomass synthesis in coculture with the alga but continued to divide-a hallmark of nutrient limitation often referred to as reductive division. Despite this sign of starvation, the bacterium still synthesized vitamin B12 and supported the growth of a B12-dependent C. reinhardtii mutant. Finally, we showed that bacterial proliferation could be supported solely by the algal lysis that occurred in coculture, highlighting the role of necromass in carbon cycling. Collectively, these results reveal the scarcity of fixed carbon in this microbial trophic relationship (particularly under environmentally relevant light regimes), demonstrate B12 exchange even during bacterial starvation, and underscore the importance of quantitative approaches for assessing metabolic coupling in algal-bacterial interactions.


Assuntos
Carbono , Chlamydomonas reinhardtii , Processos Heterotróficos , Mesorhizobium , Interações Microbianas , Fotossíntese , Vitamina B 12 , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Carbono/metabolismo , Vitamina B 12/metabolismo , Mesorhizobium/metabolismo , Mesorhizobium/fisiologia , Mesorhizobium/genética , Mesorhizobium/crescimento & desenvolvimento , Biomassa , Técnicas de Cocultura , Isótopos de Carbono/metabolismo , Processos Fototróficos
13.
Bioresour Technol ; 408: 131151, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053599

RESUMO

This research evaluated a microalgae consortium (MC) in a pilot-scale tubular photobioreactor for municipal wastewater (MWW) treatment, compared with an aeration column photobioreactor. Transitioning from suspended MC to a microalgae-microbial biofilm (MMBF) maintained treatment performance despite increasing influent from 50 L to 150 L in a 260 L system. Carbon and nitrogen removal were effective, but phosphorus removal varied due to biofilm shading and the absence of phosphorus-accumulating organisms. High influent flow caused MMBF detachment due to shear stress. Stabilizing and re-establishing the MMBF showed that a stable phycosphere influenced microbial diversity and interactions, potentially destabilizing the MMBF. Heterotrophic nitrification-aerobic denitrification bacteria were crucial for MC equilibrium. Elevated gene expression related to nitrogen fixation, organic nitrogen metabolism, and nitrate reduction confirmed strong microalgal symbiosis, highlighting MMBF's treatment potential. This study supports the practical application of microalgae in wastewater treatment.


Assuntos
Biofilmes , Desnitrificação , Processos Heterotróficos , Microalgas , Nitrogênio , Fotobiorreatores , Águas Residuárias , Microalgas/metabolismo , Águas Residuárias/microbiologia , Fotobiorreatores/microbiologia , Nitrogênio/metabolismo , Fósforo , Purificação da Água/métodos , Aerobiose , Carbono/metabolismo , Carbono/farmacologia , Eliminação de Resíduos Líquidos/métodos
14.
New Phytol ; 243(6): 2430-2441, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39081019

RESUMO

To evaluate the nutritional modes of orchids associated with 'rhizoctonia' fungi, analyses of hydrogen (δ2H), carbon (δ13C), and nitrogen (δ15N) stable isotope ratios are usually adopted. However, previous studies have not fully accounted for exchangeable hydrogens, which could affect these evaluations. Here, we performed standard δ13C, δ15N, and δ2H analyses on bulk samples. Additionally, we conducted δ2H analysis on α-cellulose and cellulose nitrate samples to investigate whether the heterogeneity of exchangeable hydrogens among plant species influences the assessment of nutritional modes. The δ2H of orchids were consistently higher than those of surrounding autotrophic plants, irrespective of the three pretreatments. Although the rhizoctonia-associated orchid exhibited lower δ13C, its δ2H was higher than those of the autotrophs. Notably, among all response variables, δ15N and δ2H exhibited high abilities for discriminating the nutritional modes of rhizoctonia-associated orchids. These results indicate that a time-efficient bulk sample analysis is an effective method for evaluating plant nutritional modes, as the heterogeneity of exchangeable hydrogens does not significantly impact the estimation. Using δ15N and δ2H benefits the assessment of partial mycoheterotrophy among rhizoctonia-associated orchids.


Assuntos
Celulose , Processos Heterotróficos , Isótopos de Nitrogênio , Orchidaceae , Orchidaceae/microbiologia , Celulose/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Rhizoctonia/fisiologia , Hidrogênio/metabolismo , Hidrogênio/análise , Deutério/análise , Deutério/metabolismo
15.
PLoS One ; 19(7): e0306725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39078831

RESUMO

The global increase in anthropogenic CO2 is leading to ocean warming and acidification, which is threatening corals. In Ischia, Italy, two species of Mediterranean scleractinian corals-the symbiotic Cladocora caespitosa and the asymbiotic Astroides calycularis-were collected from ambient pH sites (average pHT = 8.05) and adjacent CO2 vent sites (average pHT = 7.8) to evaluate their response to ocean acidification. Coral colonies from both sites were reared in a laboratory setting for six months at present day pH (pHT ~ 8.08) or low pH (pHT ~7.72). Previous work showed that these corals were tolerant of low pH and maintained positive calcification rates throughout the experiment. We hypothesized that these corals cope with low pH by increasing their heterotrophic capacity (i.e., feeding and/or proportion of heterotrophically derived compounds incorporated in their tissues), irrespective of site of origin, which was quantified indirectly by measuring δ13C, δ15N, and sterols. To further characterize coral health, we quantified energy reserves by measuring biomass, total lipids, and lipid classes. Additional analysis for C. caespitosa included carbohydrates (an energy reserve) and chlorophyll a (an indicator of photosynthetic capacity). Isotopic evidence shows that ambient-sourced Mediterranean corals, of both species, decreased heterotrophy in response to six months of low pH. Despite maintaining energy reserves, lower net photosynthesis (C. caespitosa) and a trend of declining calcification (A. calycularis) suggest a long-term cost to low heterotrophy under ocean acidification conditions. Conversely, vent-sourced corals maintained moderate (C. caespitosa) or high (A. calycularis) heterotrophic capacity and increased photosynthesis rates (C. caespitosa) in response to six months at low pH, allowing them to sustain themselves physiologically. Provided there is sufficient zooplankton and/or organic matter to meet their heterotrophic needs, vent-sourced corals are more likely to persist this century and potentially be a source for new corals in the Mediterranean.


Assuntos
Antozoários , Dióxido de Carbono , Animais , Antozoários/fisiologia , Antozoários/metabolismo , Concentração de Íons de Hidrogênio , Dióxido de Carbono/metabolismo , Processos Heterotróficos/fisiologia , Mar Mediterrâneo , Água do Mar/química , Fotossíntese , Calcificação Fisiológica
16.
J Environ Manage ; 366: 121804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996606

RESUMO

The limited availability of carbon sources in low carbon source wastewater has always hindered nitrogen removal efficiency. The residual slurry liquid after anaerobic digestion has the potential to be used as a carbon source. This study investigated the optimal parameters of dissolved oxygen (DO) for enhancing the treatment of low carbon source wastewater using slurry, and revealed the characteristics of carbon metabolism gene enrichment and carbon fixation potential driven by DO. The results indicated that treating wastewater under high DO concentrations (3-4 mg/L) conditions could meet the emission standards set by wastewater treatment plants in China. However, the lower-cost DO concentration of 3 mg/L is considered a more cost-effective parameter, effectively removing 85.68% of chemical oxygen demand and 91.56% of total nitrogen. Mechanistic analysis suggested that reducing DO concentration increased the diversity of microbial communities. Regulating DO concentration reshaped the co-metabolic network of microorganisms with different DO sensitivities by influencing Hydrogenophaga and Chlorobium. This ultimately led to the reconstruction of heterotrophic microbial communities dominated by Sphaerotilus and Acidovorax under high DO conditions, and heterotrophic-autotrophic co-enriched microbial communities dominated by Chlorobium under low DO conditions (1-2 mg/L). Additionally, under high DO conditions, high microbial mass transfer efficiency and the enrichment of functional genes were crucial for achieving high nitrogen removal performance. Further, the microbial carbon fixation potential was relatively high under the DO 3 mg/L condition, helping to reduce the consumption of additional carbon sources. This study provided innovative ideas for the sustainable and low-carbon development of wastewater treatment technology.


Assuntos
Carbono , Oxigênio , Águas Residuárias , Águas Residuárias/química , Carbono/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Processos Heterotróficos , China , Análise da Demanda Biológica de Oxigênio
17.
Proc Natl Acad Sci U S A ; 121(30): e2319628121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012821

RESUMO

Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.


Assuntos
Ecossistema , Fósseis , Processos Heterotróficos , Filogenia , Biodiversidade , Evolução Biológica , Amebozoários/genética , Amebozoários/classificação , Amoeba/genética , Amoeba/classificação , Amoeba/fisiologia , Eucariotos/genética , Eucariotos/classificação
18.
Arch Microbiol ; 206(8): 351, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008112

RESUMO

The heterotrophic nitrification aerobic denitrification bacteria (HNDS) can perform nitrification and denitrification at the same time. Two HNDS strains, Achromobacter sp. HNDS-1 and Enterobacter sp. HNDS-6 which exhibited an amazing ability to solution nitrogen (N) removal have been successfully isolated from paddy soil in our lab. When peptone or ammonium sulfate as sole N source, no significant difference in gene expression related to nitrification and denitrification of the strains was found according to the transcriptome analysis. The expression of phosphomethylpyrimidine synthase (thiC), ABC transporter substrate-binding protein, branched-chain amino acid ABC transporter substrate-binding protein, and RNA polymerase (rpoE) in HNDS-1 were significantly upregulated when used peptone as N source, while the expression of exopolysaccharide production protein (yjbE), RNA polymerase (rpoC), glutamate synthase (gltD) and ABC-type branched-chain amino acid transport systems in HNDS-6 were significantly upregulated. This indicated that these two strains are capable of using organic N and converting it into NH4+-N, then utilizing NH4+-N to synthesize amino acids and proteins for their own growth, and strain HNDS-6 can also remove NH4+-N through nitrification and denitrification.


Assuntos
Desnitrificação , Perfilação da Expressão Gênica , Nitrificação , Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Processos Heterotróficos , Aerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Achromobacter/metabolismo , Achromobacter/genética , Achromobacter/isolamento & purificação , Transcriptoma , Regulação Bacteriana da Expressão Gênica
19.
J Hazard Mater ; 476: 135160, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991646

RESUMO

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.


Assuntos
Desnitrificação , Desinfetantes , Nitrificação , Nitrificação/efeitos dos fármacos , Desinfetantes/toxicidade , Desnitrificação/efeitos dos fármacos , Hormese/efeitos dos fármacos , Xilenos/toxicidade , Aerobiose , Sinergismo Farmacológico , Poluentes Químicos da Água/toxicidade , Processos Heterotróficos , Nitrogênio/metabolismo
20.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39039015

RESUMO

The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.


Assuntos
Bactérias , Carbono , Nitrogênio , Fosfatos , Fósforo , Água do Mar , Água do Mar/microbiologia , Água do Mar/química , Fosfatos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fósforo/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Finlândia , Oceanos e Mares , Eutrofização , Processos Heterotróficos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA