Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
1.
Mol Biol Rep ; 51(1): 961, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235637

RESUMO

The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.


Assuntos
Gossypium , Infertilidade das Plantas , Gossypium/genética , Gossypium/fisiologia , Infertilidade das Plantas/genética , Marcadores Genéticos , Genes de Plantas/genética , Melhoramento Vegetal/métodos , Sementes/genética , Regulação da Expressão Gênica de Plantas/genética , Alelos , Hibridização Genética/genética
2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273690

RESUMO

Cytoplasmic male sterility (CMS) is important for commercial hybrid seed production. However, it is still not used in eggplant (Solanum melongena L.), and corresponding regulatory genes and mechanisms of action have not been reported. We report CMS line 327A, which was derived from the hybridization between cultivated and wild eggplants. By looking at different stages of anther development under a microscope, we saw that the 327A anther's tapetum layer vacuolized during meiosis, which caused abortion. To investigate the 327A CMS regulatory genes, the mitochondrial genomes of 327A and its maintainer line 327B were assembled de novo. It was found that 15 unique ORFs (Open Reading Frame) were identified in 327A. RT-PCR and RT-QPCAR tests confirmed that orf312a and orf172a, 327A-specific ORFs with a transmembrane domain, were strongly expressed in sterile anthers of 327A. In addition, orf312a has a chimeric structure with the ribosomal protein subunit rpl16. Therefore, orf312a and orf172a can be considered strong candidate genes for CMS. Concurrently, we analyzed the characteristics of CMS to develop a functional molecular marker, CMS312, targeting a future theoretical basis for eggplant CMS three-line molecular breeding.


Assuntos
Genoma Mitocondrial , Infertilidade das Plantas , Solanum melongena , Solanum melongena/genética , Infertilidade das Plantas/genética , Fases de Leitura Aberta/genética , Regulação da Expressão Gênica de Plantas , Citoplasma/genética , Citoplasma/metabolismo , Genes de Plantas
3.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261781

RESUMO

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Assuntos
Antocianinas , Capsicum , Filogenia , Proteínas de Plantas , Capsicum/genética , Capsicum/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Repetições WD40/genética , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125940

RESUMO

Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.


Assuntos
Produtos Agrícolas , DNA Mitocondrial , Genoma Mitocondrial , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , DNA Mitocondrial/genética , Infertilidade das Plantas/genética , Citoplasma/genética , Citoplasma/metabolismo , Melhoramento Vegetal/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genes Mitocondriais
5.
Plant Physiol Biochem ; 215: 109015, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133983

RESUMO

Male sterile lines are key resources for hybrid seed production and for ensuring high varietal purity. However, the genes and mechanisms underlying sesame male sterility remain largely unknown. Hence, this study identified an O-acetylserine(thiol)lyase gene SiOASTL1 and functionally characterized its roles in inducing defective anther development. Spatiotemporal expression analysis revealed that SiOASTL1 is significantly (2.7 fold) up-regulated in sterile sesame anthers at the microspore stage compared with fertile ones. Sequence and phylogenetic analyses showed that SiOASTL1 is homologous to Arabidopsis OAS-TL plastid isoforms. We thus overexpressed SiOASTL1 in Arabidopsis to unravel its regulatory roles. Cytological observation revealed that SiOASTL1 overexpression transformed transgenic plants into male sterile lines arising at the microspore development stage. SiOASTL1 overexpression decreased cysteine biosynthesis and down-regulated the expression of the sporopollenin synthesis-related genes, including AtTKPR1, AtTKPR2, AtPKSA, and AtPKSB in transgenic Arabidopsis. Consequently, the tapetum programmed cell death (PCD) was delayed, resulting in the formation of defective pollen grains with irregular walls and empty cytoplasm. Our findings prove that the induction of SiOASTL1 expression disrupts pollen development and contributes to sesame male sterility. Moreover, these results suggest that genetic manipulation of SiOASTL1 expression may facilitate the development of new hybrid varieties in sesame and other crops.


Assuntos
Apoptose , Arabidopsis , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Plantas Geneticamente Modificadas , Sesamum , Sesamum/genética , Sesamum/metabolismo , Infertilidade das Plantas/genética , Arabidopsis/genética , Apoptose/genética , Pólen/genética , Pólen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Filogenia
7.
Int J Biol Macromol ; 278(Pt 2): 134856, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168224

RESUMO

Male sterility is used in the production of hybrid seeds and can improve the breeding efficiency of cotton hybrids. Reactive oxygen species is closely associated with the tapetum and pollen development, but their relationship in cotton male fertility remains unclear. In this study, we comprehensively compared the cytology and proteome of the anthers from an Upland cotton (Gossypium hirsutum) material, Shida 98 (WT), and its nearly-isogenic male sterile line Shida 98A (MS). Cytology indicated delayed PCD in the tapetum and defects in microspores in MS anthers. And further studies revealed disruption of ROS homeostasis. Proteomic analysis identified proteins with differential abundance mainly being related to redox homeostasis, protein folding, and apoptotic signaling pathways. GhAPX1 interacted with GhHSP70 and played a crucial role in the development of cotton anthers. Exogenous application of HSP70 inhibitor increased H2O2 content and decreased the activity of APX1 and pollen viability. The GhAPX1 mutants generated by CRISPR/Cas9-mediated gene editing exhibited premature degradation of the tapetum, significant decrease in pollen viability, and significant increase in H2O2 content. Altogether, our results imply HSP70 and APX1 being the key players jointly regulating male fertility by mediating ROS homeostasis. These results provide insights into the proteins associated with male fertility.


Assuntos
Gossypium , Proteínas de Choque Térmico HSP70 , Homeostase , Proteínas de Plantas , Pólen , Espécies Reativas de Oxigênio , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pólen/genética , Pólen/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Infertilidade das Plantas/genética , Fertilidade , Regulação da Expressão Gênica de Plantas , Proteômica/métodos , Peróxido de Hidrogênio/metabolismo
8.
BMC Plant Biol ; 24(1): 746, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098914

RESUMO

BACKGROUND: The male sterile lines are an important foundation for heterosis utilization in wheat (Triticum aestivum L.). Thereinto, pollen development is one of the indispensable processes of wheat reproductive development, and its fertility plays an important role in wheat heterosis utilization, and are usually influencing by genes. However, these key genes and their regulatory networks during pollen abortion are poorly understood in wheat. RESULTS: DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1) is a member of the R2R3-MYB family and has been shown to be essential for early tapetal layer development and pollen grain fertility in rice (Oryza sativa L.) and Arabidopsis thaliana. In order to clarify the function of TDF1 in wheat anthers development, we used OsTDF1 gene as a reference sequence and homologous cloned wheat TaTDF1 gene. TaTDF1 is localized in the nucleus. The average bolting time of Arabidopsis thaliana overexpressed strain (TaTDF1-OE) was 33 d, and its anther could be colored normally by Alexander staining solution, showing red. The dominant Mosaic suppression silence-line (TaTDF1-EAR) was blue-green in color, and the anthers were shrimpy and thin. The TaTDF1 interacting protein (TaMAP65) was confirmed using Yeast Two-Hybrid Assay (Y2H) and Bimolecular-Fluorescence Complementation (BiFC) experiments. The results showed that downregulated expression of TaTDF1 and TaMAP65 could cause anthers to be smaller and shrunken, leading to pollen abortion in TaTDF1 wheat plants induced by virus-induced gene-silencing technology. The expression pattern of TaTDF1 was influenced by TaMAP65. CONCLUSIONS: Thus, systematically revealing the regulatory mechanism of wheat TaTDF1 during anther and pollen grain development may provide new information on the molecular mechanism of pollen abortion in wheat.


Assuntos
Infertilidade das Plantas , Proteínas de Plantas , Pólen , Triticum , Triticum/genética , Triticum/fisiologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Genes de Plantas
9.
Mol Biol Rep ; 51(1): 910, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150575

RESUMO

Cytoplasmic male sterility has been a popular genetic tool in development of hybrids. The molecular mechanism behind maternal sterility varies from crop to crop. An understanding of underlying mechanism can help in development of new functional CMS gene in crops which lack effective and stable CMS systems. In crops where seed or fruit is the commercial product, fertility must be recovered in F1 hybrids so that higher yield gains can be realized. This necessitates the presence of fertility restorer gene (Rf) in nucleus of male parent to overcome the effect of sterile cytoplasm. Fertility restoring genes have been identified in crops like wheat, maize, sunflower, rice, pepper, sugar beet, pigeon pea etc. But in crops like eggplant, bell pepper, barley etc. unstable fertility restorers hamper the use of Cytoplasmic genic male sterility (CGMS) system. Stability of CGMS system is influenced by environment, genetic background or interaction of these factors. This review thus aims to understand the genetic mechanisms controlling mitochondrial-nuclear interactions required to design strong and stable restorers without any pleiotropic effects in F1 hybrids.


Assuntos
Citoplasma , Fertilidade , Infertilidade das Plantas , Infertilidade das Plantas/genética , Citoplasma/metabolismo , Citoplasma/genética , Fertilidade/genética , Produtos Agrícolas/genética , Melhoramento Vegetal/métodos , Regulação da Expressão Gênica de Plantas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética
10.
Physiol Plant ; 176(4): e14429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039026

RESUMO

Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Capsicum/genética , Capsicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Pólen/fisiologia , Fertilidade/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mol Plant ; 17(8): 1272-1288, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38956872

RESUMO

The discovery of a wild abortive-type (WA) cytoplasmic male sterile (CMS) line and breeding its restorer line have led to the commercialization of three-line hybrid rice, contributing considerably to global food security. However, the molecular mechanisms underlying fertility abortion and the restoration of CMS-WA lines remain largely elusive. In this study, we cloned a restorer gene, Rf20, following a genome-wide association study analysis of the core parent lines of three-line hybrid rice. We found that Rf20 was present in all core parental lines, but different haplotypes and structural variants of its gene resulted in differences in Rf20 expression levels between sterile and restored lines. Rf20 could restore pollen fertility in the CMS-WA line and was found to be responsible for fertility restoration in some CMS lines under high temperatures. In addition, we found that Rf20 encodes a pentatricopeptide repeat protein that competes with WA352 for binding with COX11. This interaction enhances COX11's function as a scavenger of reactive oxygen species, which in turn restores pollen fertility. Collectively, our study suggests a new action mode for pentatricopeptide repeat proteins in the fertility restoration of CMS lines, providing an essential theoretical basis for breeding robust restorer lines and for overcoming high temperature-induced fertility recovery of some CMS lines.


Assuntos
Oryza , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Fertilidade/genética , Citoplasma/metabolismo , Citoplasma/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas
12.
Mol Genet Genomics ; 299(1): 68, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980531

RESUMO

The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.


Assuntos
Cajanus , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Pólen , Pólen/genética , Pólen/crescimento & desenvolvimento , Cajanus/genética , Cajanus/crescimento & desenvolvimento , Cajanus/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases do Tipo-P/genética , ATPases do Tipo-P/metabolismo , Fertilidade/genética , Flores/genética , Flores/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Perfilação da Expressão Gênica , Genoma de Planta
13.
BMC Genomics ; 25(1): 740, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080530

RESUMO

BACKGROUND: Photo-thermo-sensitive male sterility (PTMS), which refers to the male sterility triggered by variations in photoperiod and temperature, is a crucial element in the wheat two-line hybrid system. The development of safe production and efficient propagation for male sterile lines holds utmost importance in two-line hybrid wheat. Under the stable photoperiod condition, PTMS is mainly induced by high or low temperatures in wheat, but the effect of daily temperature difference (DTD) on the fertility conversion of PTMS lines has not been reported. Here, three BS type PTMS lines including BS108, BS138, and BS366, as well as a control wheat variety J411 were used to analyze the correlation between fertility and DTD using differentially sowing tests, photo-thermo-control experiments, and transcriptome sequencing. RESULTS: The differentially sowing tests suggested that the optimal sowing time for safe seed production of the three PTMS lines was from October 5th to 25th in Dengzhou, China. Under the condition of 12 h 12 °C, the PTMS lines were greatly affected by DTD and exhibited complete male sterility at a temperature difference of 15 °C. Furthermore, under different temperature difference conditions, a total of 20,677 differentially expressed genes (DEGs) were obtained using RNA sequencing. Moreover, through weighted gene co-expression network analysis (WGCNA) and KEGG enrichment analysis, the identified DEGs had a close association with "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "MAPK signaling pathway-plant", "flavonoid biosynthesis", and "cutin, and suberine and wax biosynthesis". qRT-PCR analysis showed the expression levels of core genes related to KEGG pathways significantly decreased at a temperature difference of 15 ° C. Finally, we constructed a transcriptome mediated network of temperature difference affecting male sterility. CONCLUSIONS: The findings provide important theoretical insights into the correlation between temperature difference and male sterility, providing guidance for the identification and selection of more secure and effective PTMS lines.


Assuntos
Perfilação da Expressão Gênica , Infertilidade das Plantas , Temperatura , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Infertilidade das Plantas/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Fotoperíodo
14.
PLoS One ; 19(7): e0303436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985786

RESUMO

Maize (Zea mays L.) C-type cytoplasmic male sterility (CMS-C) is a highly used CMS system for maize commercial hybrid seed production. Rf4 is the major dominant restorer gene for CMS-C. Inbreds were recently discovered which contain the restoring Rf4 allele yet are unable to restore fertility due to the lack of an additional gene required for Rf4's restoration. To find this additional gene, QTL mapping and positional cloning were performed using an inbred that contained Rf4 but was incapable of restoring CMS-C. The QTL was mapped to a 738-kb interval on chromosome 2, which contains a Pentatricopeptide Repeat (PPR) gene cluster. Allele content comparisons of the inbreds identified three potential candidate genes responsible for fertility restoration in CMS-C. Complementation via transformation of these three candidate genes showed that PPR153 (Zm00001eb114660) is required for Rf4 to restore fertility to tassels. The PPR153 sequence is present in B73 genome, but it is not capable of restoring CMS-C without Rf4. Analysis using NAM lines revealed that Rf4 requires the presence of PPR153 to restore CMS-C in diverse germplasms. This research uncovers a major CMS-C genetic restoration pathway and can be used for identifying inbreds suitable for maize hybrid production with CMS-C cytoplasm.


Assuntos
Infertilidade das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Infertilidade das Plantas/genética , Citoplasma/metabolismo , Citoplasma/genética , Mapeamento Cromossômico , Genes de Plantas , Proteínas de Plantas/genética , Alelos
15.
Genes (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062634

RESUMO

The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear-mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action.


Assuntos
Aegilops , Citoplasma , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Citoplasma/genética , Aegilops/genética , Cromossomos de Plantas/genética , Haploidia , Pólen/genética , Pólen/crescimento & desenvolvimento , Partenogênese/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Núcleo Celular/genética
16.
Plant Sci ; 346: 112154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879178

RESUMO

Chinese cabbage is a cross-pollinated crop with significant heterosis, and male sterile lines are an important way to produce hybrid seeds. In this study, a male sterile mutant msm0795 was identified in an EMS-mutagenized population of Chinese cabbage. Cytological observations revealed that the microspores failed to separate after the tetrad stage, and thus developed into abnormal pollen grains, resulting in anther abortion. MutMap combined with Kompetitive Allele Specific PCR genotyping showed that BraA01g011280.3.5 C was identified as the candidate gene, which encodes polygalacturonase QRT3 and plays a direct role in the degradation of pollen mother cell wall during microspore development, named BrQRT3. Subcellular localization and expression analyses demonstrated that BrQRT3 was localized in the cell membrane and was ubiquitously expressed in roots, stems, leaves, flower buds, and flowers, but the expression of BrQRT3 was gradually suppressed with the anther development. Ectopic expression confirmed that over-expression of BrQRT3 in qrt3 background Arabidopsis mutant can rescue the pollen defects caused by loss of AtQRT3 function. It is the first time to achieve a male sterile mutant caused by the mutation of BrQRT3 in Chinese cabbage. These findings contribute to elucidate the mechanism of BrQRT3 in regulating stamen development of Chinese cabbage.


Assuntos
Brassica , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Brassica/genética , Brassica/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Genes de Plantas , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Mutação , Flores/genética , Flores/crescimento & desenvolvimento
17.
Genetics ; 228(1)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38941481

RESUMO

Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.


Assuntos
Hibridização Genética , Oryza , Infertilidade das Plantas , Tetraploidia , Oryza/genética , Oryza/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Pólen/genética , Fertilidade/genética , Genes de Plantas , Loci Gênicos
18.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862889

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Assuntos
Oryza , Infertilidade das Plantas , Pólen , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Infertilidade das Plantas/genética , Transcriptoma , Perfilação da Expressão Gênica , Metabolômica , Metaboloma , Regulação da Expressão Gênica de Plantas , Meiose
19.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892019

RESUMO

The Manipulated Genic Male Sterile Maintainer (MGM) system, a next-generation hybrid seed technology, enables efficient production of sortable seeds from genic male sterile (GMS) lines. However, implementing robust MGM systems in commercial maize inbred lines requires stable transformation, a genotype-specific and laborious process. This study aimed to integrate MGM technology into the commercial maize inbred line Z372, developing both GMS and MGM lines. We utilized the MGM line ZC01-3A-7, which contains the MS26ΔE5 editor T-DNA and MGM T-DNA, previously established in the highly transformable ZC01 recipient plants. Through a combination of crossing and backcrossing with Z372, we targeted the fertility gene Ms26 within the Z372 genome for mutation using the in vivo CRISPR/Cas9 activity within the MS26ΔE5 editor T-DNA construct. This approach facilitated precise editing of the Ms26 locus, minimizing linkage drag associated with the Ms26 mutation. Whole-genome SNP analysis achieved a 98.74% recovery rate for GMS and 96.32% for MGM in the BC2F2 generation. Importantly, the Z372-GMS line with the ms26ΔE5 mutation is non-transgenic, avoiding linkage drag and demonstrating production readiness. This study represents a significant advancement in maize breeding, enabling the rapid generation of GMS and MGM lines for efficient hybrid seed production.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Zea mays , Zea mays/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Mutação , Genoma de Planta , Endogamia , Infertilidade das Plantas/genética , Sementes/genética , Polimorfismo de Nucleotídeo Único , DNA Bacteriano
20.
Physiol Plant ; 176(3): e14394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894535

RESUMO

AIMS: The genic male sterility (GMS) system is an important strategy for generating heterosis in plants. To better understand the essential role of lipid and sugar metabolism and to identify additional candidates for pollen development and male sterility, transcriptome and metabolome analysis of a GMS line of 1205AB in B. napus was used as a case study. DATA RESOURCES GENERATED: To characterize the GMS system, the transcriptome and metabolome profiles were generated for 24 samples and 48 samples of 1205AB in B. napus, respectively. Transcriptome analysis yielded a total of 156.52 Gb of clean data and revealed the expression levels of 109,541 genes and 8,501 novel genes. In addition, a total of 1,353 metabolites were detected in the metabolomic analysis, including 784 in positive ion mode and 569 in negative ion mode. KEY RESULTS: A total of 15,635 differentially expressed genes (DEGs) and 83 differential metabolites (DMs) were identified from different comparison groups, most of which were involved in lipid and sugar metabolism. The combination of transcriptome and metabolome analysis revealed 49 orthologous GMS genes related to lipid metabolism and 46 orthologous GMS genes related to sugar metabolism, as well as 45 novel genes. UTILITY OF THE RESOURCE: The transcriptome and metabolome profiles and their analysis provide useful reference data for the future discovery of additional GMS genes and the development of more robust male sterility breeding systems for use in the production of plant hybrids.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Infertilidade das Plantas , Pólen , Transcriptoma , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Pólen/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Metabolismo dos Lipídeos/genética , Transcriptoma/genética , Metaboloma/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA