Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.942
Filtrar
1.
Anal Chem ; 96(35): 14248-14256, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39167046

RESUMO

Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 µM and their mixtures at 5 µM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.


Assuntos
Európio , Aprendizado de Máquina , Praguicidas , Praguicidas/análise , Európio/química , Tiabendazol/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Sucos de Frutas e Vegetais/análise , Análise de Componente Principal , Fluoretos/química , Fluoretos/análise
2.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124899

RESUMO

Anthelmintic resistance in gastrointestinal nematodes produces substantial challenges to agriculture, and new strategies for nematode control in livestock animals are called for. Natural compounds, including tannins, with proven anthelmintic activity could be a functional option as structurally diverse complementary compounds to be used alongside commercial anthelmintics. However, the dual use of two anthelmintic components requires an understanding of the pharmacological effects of the combination, while information concerning the interactions between plant-based polyphenols and commercial anthelmintics is scarce. We studied the direct interactions of proanthocyanidins (PAs, syn. condensed tannins) and a commercial anthelmintic thiabendazole, as a model substance of benzimidazoles, by isothermal titration calorimetry (ITC). Our results show evidence of a direct interaction of an exothermic nature with observed enthalpy changes ranging from 0 to -30 kJ/mol. The strength of the interaction between PAs and thiabendazole is mediated by structural characteristics of the PAs with the strongest positive correlation originating from the presence of galloyl groups and the increased degree of polymerization.


Assuntos
Anti-Helmínticos , Calorimetria , Proantocianidinas , Tiabendazol , Proantocianidinas/química , Proantocianidinas/farmacologia , Tiabendazol/química , Tiabendazol/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Termodinâmica , Animais
3.
Chemosphere ; 363: 142711, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964723

RESUMO

Food safety is closely linked to human health. Thiabendazole is widely used as a fungicide and deodorant on agricultural products like vegetables and fruits to prevent fungal infections during transport and storage. This study aims to investigate the toxicity and potential mechanisms of Thiabendazole using novel network toxicology and molecular docking techniques. First, the ADMETlab2.0 and ADMETsar databases, along with literature, predicted Thiabendazole's potential to induce cancer and liver damage. Disease target libraries were constructed using GeneCards and TCMIP databases, while Thiabendazole target libraries were constructed using Swiss Target Prediction and TCMIP databases. The Venn database identified potential targets associated with Thiabendazole-induced cancer and liver injury. Protein-protein interaction (PPI) networks were derived from the STRING database, and gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways were obtained from the DAVID database. Molecular docking assessed the binding affinity between Thiabendazole and core targets. The study revealed 29 potential targets for Thiabendazole-induced cancer and 30 potential targets for liver injury. PPI identified 5 core targets for Thiabendazole-induced cancers and 4 core targets for induced liver injury. KEGG analysis indicated that Thiabendazole might induce gastric and prostate cancer via cyclin-dependent kinase 2 (CDK2) and epidermal growth factor receptor (EGFR) targets, and liver injury through the same targets, with the p53 signaling pathway being central. GO analysis indicated that Thiabendazole-induced cancers and liver injuries were related to mitotic cell cycle G2/M transition and DNA replication. Molecular docking showed stable binding of Thiabendazole with core targets including CDK1, CDK2, EGFR, and checkpoint kinase 1 (CHEK1). These findings suggest Thiabendazole may affect the G2/M transition of the mitotic cell cycle through the p53 signaling pathway, potentially inducing cancer and liver injury. This study provides a theoretical basis for understanding the potential molecular mechanisms underlying Thiabendazole toxicity, aiding in the prevention and treatment of related diseases. Additionally, the network toxicology approach accelerates the elucidation of toxic pathways for uncharacterized agricultural chemicals.


Assuntos
Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Tiabendazol , Tiabendazol/toxicidade , Tiabendazol/química , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Neoplasias/tratamento farmacológico
4.
Anal Methods ; 16(28): 4827-4834, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38967314

RESUMO

A cloud point method was developed and applied for the first time to extract and preconcentrate thiabendazole (TBZ) from commercial whole grape juice samples, with determination by high performance liquid chromatography coupled to electrochemical detection (HPLC/EC), using a cathodically pretreated boron-doped diamond electrode (BDD). The best conditions for extraction and preconcentration of TBZ by cloud point extraction (CPE) were performed at pH 6.0, by adding 1 mL of the surfactant Tergitol TMN-6 at 10% (mass-to-mass ratio), without heating (at 27 °C) and ultrasonic stirring time of (20 kHz) for 60 min. The HPLC/EC determination was duly validated in a C8 column, in mobile phase with a 69 : 31 ratio (V/V) of phosphate buffer (pH 7.0):ACN, at a flow rate of 1.2 mL min-1 and electrochemical detection with BDD electrode by applying 1.40 V × Ag/AgCl (3.0 mol L-1). Under these conditions, the procedure showed a preconcentration factor (FC) of 21.7, and limits of detection (LOD) and quantification (LOQ) of 6.64 × 10-9 mol L-1 (or 1.33 µg L-1) and 1.66 × 10-8 mol L-1 (or 3.34 µg L-1), respectively. The method provided a percent recovery of 81% to 98%, with a coefficient of variation between 3% and 15%.


Assuntos
Técnicas Eletroquímicas , Sucos de Frutas e Vegetais , Tiabendazol , Vitis , Cromatografia Líquida de Alta Pressão/métodos , Tiabendazol/análise , Tiabendazol/isolamento & purificação , Sucos de Frutas e Vegetais/análise , Vitis/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Praguicidas/análise , Contaminação de Alimentos/análise
5.
J Colloid Interface Sci ; 673: 426-433, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878376

RESUMO

SERS measurements for monitoring bactericides in dairy products are highly desired for food safety problems. However, the complicated preparation process of SERS substrates greatly impedes the promotion of SERS. Here, we propose acoustofluidic one-step synthesis of Ag nanoparticles on paper substrates for SERS detection. Our method is economical, fast, simple, and eco-friendly. We adopted laser cutting to cut out appropriate paper shapes, and aldehydes were simultaneously produced at the cutting edge in the pyrolysis of cellulose by laser which were leveraged as the reducing reagent. In the synthesis, only 5 µL of Ag precursor was added to complete the reaction, and no reducing agent was used. Our recently developed acoustofluidic device was employed to intensely mix Ag+ ions and aldehydes and spread the reduced Ag nanoparticles over the substrate. The SERS substrate was fabricated in 1 step and 3 min. The standard R6G solution measurement demonstrated the excellent signal and prominent uniformity of the fabricated SERS substrates. SERS detection of the safe concentration of three bactericides, including tetracycline hydrochloride, thiabendazole, and malachite green, from food samples can be achieved using fabricated substrates. We take the least cost, time, reagents, and steps to fabricate the SERS substrate with satisfying performance. Our work has an extraodinary meaning for the green preparation and large-scale application of SERS.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Papel , Prata , Análise Espectral Raman , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/análise , Propriedades de Superfície , Tetraciclina/análise , Corantes de Rosanilina/análise , Corantes de Rosanilina/química , Tiabendazol/análise , Tamanho da Partícula
6.
Exp Parasitol ; 262: 108769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735519

RESUMO

The aim of the present study was to validate methods of stool sample conservation for the egg hatch test (EHT). This study involved the use of a bovine naturally infected predominantly by Cooperia spp. and one equine naturally infected predominantly by cyathostomins characterized as susceptible to benzimidazoles in the EHT. Fecal samples were submitted to three treatments: aerobic methods (anaerobic storage in plastic bottles, anaerobic storage in vacuum-sealed bags or aerobic storage in plastic bags), under two temperature conditions (room temperature and refrigeration) analyzed at four different assessment times (48, 72, 96 and 120 h). As the standard test, an assay was also performed within 3 h. The tests were performed in triplicate for each drug concentration and with three experimental repetitions at one-week intervals. Two criteria were used for the storage methods: hatchability in the negative control group and sensitivity of the eggs to thiabendazole, comparing the EC50 and 95% confidence interval for each treatment to those of the standard test and the other repetitions. Bovine samples can be stored for up to 96 h and refrigerated vacuum storage can be used, ensuring hatchability of the negative control and sensitivity of the eggs to thiabendazole. For equine samples, no forms of storage were indicated due to the variation among the repetitions and the reduction in the sensitivity of the eggs to thiabendazole, which could result in a false positive detection of resistance.


Assuntos
Fezes , Óvulo , Animais , Bovinos , Fezes/parasitologia , Cavalos/parasitologia , Óvulo/efeitos dos fármacos , Tiabendazol/farmacologia , Manejo de Espécimes/métodos , Manejo de Espécimes/veterinária , Temperatura , Anti-Helmínticos/farmacologia , Contagem de Ovos de Parasitas/veterinária , Contagem de Ovos de Parasitas/métodos , Nematoides/efeitos dos fármacos , Nematoides/isolamento & purificação , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/diagnóstico
7.
Anal Bioanal Chem ; 416(14): 3295-3303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696128

RESUMO

Thiabendazole, a widely used broad-spectrum fungicide in agriculture, poses risks to human health. To monitor its presence in water, we propose a fluorescent aptasensor utilizing Escherichia coli exonuclease I (Exo I). The findings demonstrate a linear correlation between thiabendazole concentrations and digestion percentage, with a detection limit (LOD) exceeding 1 µM and a determination coefficient (R2) of 0.959. This aptamer-based fluorescence spectroscopy detection system holds promise for a rapid, specific, and sensitive analysis of thiabendazole in environmental waters and food matrices.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Limite de Detecção , Espectrometria de Fluorescência , Tiabendazol , Tiabendazol/análise , Aptâmeros de Nucleotídeos/química , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos , Fungicidas Industriais/análise , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Escherichia coli , Poluentes Químicos da Água/análise , Corantes Fluorescentes/química
8.
ACS Sens ; 9(5): 2465-2475, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38682311

RESUMO

The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.


Assuntos
Cobalto , Medições Luminescentes , Nanoestruturas , Fósforo , Tiabendazol , Cobalto/química , Fósforo/química , Tiabendazol/análise , Nanoestruturas/química , Medições Luminescentes/métodos , Ferro/química
9.
Environ Toxicol Pharmacol ; 107: 104421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493880

RESUMO

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Leite , Tiabendazol , Animais , Feminino , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lactação , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tiabendazol/química , Tiabendazol/metabolismo , Xenobióticos , Cães
10.
Chembiochem ; 25(7): e202300742, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426686

RESUMO

Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both in vitro and in vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.


Assuntos
Praguicidas , Tiabendazol , Tiabendazol/farmacologia , Tiabendazol/análise , Preparações de Ação Retardada , Antifúngicos/farmacologia
11.
Biosensors (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38534240

RESUMO

Thiabendazole (TBZ) is a benzimidazole; owing to its potent antimicrobial properties, TBZ is extensively employed in agriculture as a fungicide and pesticide. However, TBZ poses environmental risks, and excessive exposure to TBZ through various leakage pathways can cause adverse effects in humans. Therefore, a method must be developed for early and sensitive detection of TBZ over a range of concentrations, considering both human and environmental perspectives. In this study, we used silver nanopillar structures (SNPis) and Au@Ag bimetallic nanoparticles (BNPs) to fabricate a BNP@SNPi substrate. This substrate exhibited a broad reaction surface with significantly enhanced surface-enhanced Raman scattering hotspots, demonstrating excellent Raman performance, along with high reproducibility, sensitivity, and selectivity for TBZ detection. Ultimately, the BNP@SNPi substrate successfully detected TBZ across a wide concentration range in samples of tap water, drinking water, juice, and human serum, with respective limits of detection of 146.5, 245.5, 195.6, and 219.4 pM. This study highlights BNP@SNPi as a promising sensor platform for TBZ detection in diverse environments and contributes to environmental monitoring and bioanalytical studies.


Assuntos
Nanopartículas Metálicas , Praguicidas , Humanos , Tiabendazol/química , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química
12.
J Agric Food Chem ; 72(7): 3456-3468, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331710

RESUMO

A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 µg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 µg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 µg/mL, respectively) comparable to carbendazim (EC50 = 1.02 µg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 µg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 µg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.


Assuntos
Ascomicetos , Benzimidazóis , Carbamatos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Antifúngicos/farmacologia , Antifúngicos/química , Relação Estrutura-Atividade , Tiabendazol , Rhizoctonia , Plantas
13.
Talanta ; 272: 125829, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422907

RESUMO

Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 µM and 2.18 µM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.


Assuntos
Clorofenóis , Alimentos , Tiabendazol , Humanos , Tiabendazol/análise , Sucos de Frutas e Vegetais
14.
Int J Hyg Environ Health ; 256: 114322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219443

RESUMO

BACKGROUND AND AIM: To date, few studies have focused on the health effects of pesticide exposure among avocado farmworkers. We examined the association of exposure to insecticides, fungicides, and herbicides with cognitive and mental health outcomes among these avocado workers from Michoacan, Mexico. MATERIALS AND METHODS: We conducted a cross-sectional study of 105 avocado farmworkers between May and August 2021. We collected data on self-reported pesticide use during the 12 months prior to the baseline survey and estimated annual exposure-intensity scores (EIS) using a semi-quantitative exposure algorithm. We calculated specific gravity adjusted average concentrations of 12 insecticide, fungicide, or herbicide metabolites measured in urine samples collected during two study visits (8-10 weeks apart). We assessed participants' cognitive function and psychological distress using the NIH Toolbox Cognition Battery and the Brief Symptom Inventory 18 (BSI-18), respectively. We examined individual associations of EIS and urinary pesticide metabolites with neurobehavioral outcomes using generalized linear regression models. We also implemented Bayesian Weighted Quantile Sum (BWQS) regression to evaluate the association between a pesticide metabolite mixture and neurobehavioral outcomes. RESULTS: In individual models, after adjusting for multiple comparisons, higher concentrations of hydroxy-tebuconazole (OH-TEB, metabolite of fungicide tebuconazole) were associated with higher anxiety (IRR per two-fold increase in concentrations = 1.26, 95% CI:1.08, 1.48) and Global Severity Index (GSI) (IRR = 1.89, 95% CI:1.36, 2.75) scores, whereas higher concentrations of 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of chlorpyrifos) were associated with lower GSI scores (IRR = 0.69, 95% CI: 0.56, 0.85). In BWQS analyses, we found evidence of a mixture association of urinary pesticide metabolites with higher anxiety (IRR = 1.72, 95% CrI: 1.12, 2.55), depression (IRR = 4.60, 95% CrI: 2.19, 9.43), and GSI (IRR = 1.99, 95% CrI: 1.39, 2.79) scores. OH-TEB and hydroxy-thiabendazole (metabolite of fungicide thiabendazole) combined contributed 54%, 40%, and 54% to the mixture effect in the anxiety symptoms, depression symptoms, and overall psychological distress models, respectively. CONCLUSIONS: We found that exposure to tebuconazole and thiabendazole, fungicides whose effects have been rarely studied in humans, may be associated with increased psychological distress among avocado farmworkers. We also observed that exposure to chlorpyrifos may be associated with decreased psychological distress.


Assuntos
Clorpirifos , Fungicidas Industriais , Inseticidas , Persea , Praguicidas , Humanos , Praguicidas/urina , Fazendeiros , México , Estudos Transversais , Teorema de Bayes , Tiabendazol , Inseticidas/urina , Inquéritos e Questionários
15.
Anal Bioanal Chem ; 416(2): 497-508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001372

RESUMO

Pesticides that linger in the environment and ecosystems for an extended period can cause severe and dangerous health problems in humans. To detect pesticides in foods, the development of high-sensitivity and quick screening technologies was required. This research investigated the performance of Au@Ag NPs with varying thicknesses of the silver shell for detecting trace quantities of thiabendazole (TBZ) in apples using surface-enhanced Raman spectroscopy (SERS). The Au@Ag NPs were synthesized by coating 32 nm gold seeds with different thicknesses of silver shell ranging from 2.4 to 8.7 nm, achieved by adjusting the incorporation of AgNO3 and ascorbic acid. The optimized Au@Ag NPs with a 7.3 nm silver shell demonstrated outstanding SERS activity, high sensitivity, and a detection limit of 0.05 µg/mL for TBZ. The R2 values, representing the goodness of fit, were found to be 0.990 and 0.986 for standard and real TBZ samples, respectively, indicating a strong correlation between the measured signal and the TBZ concentration. The recovery analysis showed a reliable and accurate detection capability (96 to 105%), suggesting good reliability and accuracy of the SERS-based detection using the optimal Au@Ag NPs. Overall, this research highlights the potential of SERS with optimal Au@Ag NPs for rapid and effective monitoring of pesticides in the food industry.


Assuntos
Malus , Nanopartículas Metálicas , Praguicidas , Humanos , Malus/química , Tiabendazol/análise , Prata/química , Reprodutibilidade dos Testes , Ecossistema , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Praguicidas/análise , Ouro/química
16.
J Sci Food Agric ; 104(5): 2630-2640, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37985216

RESUMO

BACKGROUND: Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS: Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION: The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.


Assuntos
Malus , Resíduos de Praguicidas , Praguicidas , Malus/química , Resíduos de Praguicidas/análise , Praguicidas/análise , Bicarbonato de Sódio , Análise Espectral Raman/métodos , Spinacia oleracea/química , Tensoativos , Tiabendazol/análise , Fenóis/química
17.
Talanta ; 270: 125555, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134816

RESUMO

Quantitative determination of pesticides in fruits and vegetables is essential for human healths. Herein, a new dual-emission carbon dots with high fluorescence stability at a pH range of 4-10 and a temperature range of 0-60 °C was synthesized. And a novel ratiometric fluorescence probe was proposed to detect thiabendazole (TBZ) residue with a wide linear range (0-1000 µM) and low detection limit (0.15 µM). The emission at 512 nm exhibited a special "turn-off" fluorescence sensing of TBZ due to internal filter effect, while that at 361 nm barely changed and worked as reference. Furthermore, the ratiometric fluorescence strategy was successfully applied for determining TBZ in fruits with good recoveries (96.73%-111.17 %, 93.29%-120.78 % and 96.28%-100.57 %, respectively). Notably, the constructed ratiometric fluorescence probe had comparable accuracy to HPLC in detecting unknown concentrations of TBZ in pear juice, demonstrating dual-emission carbon dots possess wide and promising applicability for fluorescence sensing pesticides in the future.


Assuntos
Praguicidas , Pontos Quânticos , Humanos , Fluorescência , Pontos Quânticos/química , Tiabendazol , Carbono/química , Frutas , Corantes Fluorescentes/química , Limite de Detecção
18.
Food Chem ; 440: 138214, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150903

RESUMO

Pesticide residue poses a significant global public health concern, necessitating improved detection methods. Here, a novel platform was introduced based on surface-enhanced Raman spectroscopy (SERS) to detect ten distinct types of pesticides. Notably, the sensitivity of this approach is exemplified by detecting trace amounts of 50 pM (10 ppt) thiabendazole. The correlation between the characteristic peak intensity of coexisting pesticides and their concentrations displays an exceptional linear relationship (R2 = 0.9999), underscoring its utility for quantitative mixed pesticide detection. Additionally, qualitative analysis of five mixed pesticides was conducted leveraging distinctive peak labeling. Harnessing machine learning techniques, a model for classifying and predicting pesticides on pericarps was developed. Remarkably, the convolutional neural network achieved classification accuracy of 100 % and prediction accuracy of 99.62 %. This innovative approach accurately identifies and quantifies diverse pesticides, thus offering a feasible scheme for in-situ detection of pesticide residues. Ultimately, this strategy contributes to ensuring food safety and public health.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Análise Espectral Raman/métodos , Praguicidas/análise , Inocuidade dos Alimentos , Tiabendazol/análise
19.
J Chromatogr A ; 1712: 464474, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37924618

RESUMO

A magnetic metal-organic framework MIL-68(Al) and a covalent organic framework were used as magnetic solid-phase extraction (MSPE) adsorbents in combination with high-performance liquid chromatography ultraviolet detection (HPLC-UV) to detect carbendazim (CBZ) and thiabendazole (TBZ). The main parameters affecting the extraction in the MSPE process were studied and optimized. Fe3O4@MIL-68(Al) coated with 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde (Fe3O4@MIL-68(Al)@TAPB-PDA-COF) was analyzed and verified. The material was proven to be suitable for adsorbing CBZ and TBZ. Various adsorption models were used to study its adsorption mechanism. The adsorption results were in good agreement with the pseudo-second-order kinetic model and Langmuir isotherm model. The maximum adsorption capacities of Fe3O4@MIL-68(Al)@TAPB-PDA-COF over CBZ and TBZ were 54.24 and 67.87 mg g-1, respectively, and the equilibrium adsorption time was 200 min. Fe3O4@MIL-68(Al)@TAPB-PDA-COF with excellent recyclability showed higher adsorption capacity and selectivity. A method based on Fe3O4@MIL-68(Al)@TAPB-PDA-COF combined with HPLC-UV was established under the optimal extraction conditions and used to separate and detect trace imidazole drugs in Chinese herbal samples, achieving a low limit of detection (0.65-1.30 µg L-1) with excellent linear correlation (r > 0.999). The recovery rate and relative standard deviation were 86.05-99.78 % and 0.15-4.90 %, respectively. Therefore, the Fe3O4@MIL-68@TAPB-PDA-COF can be regarded as an effective adsorbent for the pretreatment of CBZ and TBZ drugs in Chinese herbal samples.


Assuntos
Medicamentos de Ervas Chinesas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Tiabendazol , Extração em Fase Sólida/métodos , Adsorção , Fenômenos Magnéticos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
20.
Anal Chim Acta ; 1279: 341778, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827676

RESUMO

In this work, a four-way multivariate calibration method for the simultaneous determination of four pesticides - carbendazim (CBZ), thiabendazole (TBZ), pirimiphos-methyl (PMM), and clothianidin (CLT) - in lemon juice is presented. Third-order data were acquired by registering the photoinduced fluorescence of the analytes as excitation-emission matrices at different times of UV-light irradiation, in the presence of organized media (direct micelles) as fluorescence enhancers. The optimal experimental conditions (pH 11.5 and 32 mmol L-1 hexadecyltrimethylammonium chloride surfactant) were determined through a central composite design using the response surface methodology. The analytes were individually calibrated, except for TBZ and CBZ due to the inner filter effect of TBZ on CBZ. Test samples containing all analytes and imidacloprid (as potential interference) were analysed. PARAFAC was utilized to evaluate both the trilinearity and quadrilinearity of the third-order data and four-way arrays, respectively. PMM was successfully determined with quadrilinear PARAFAC decomposition, whereas CLT, TBZ, and CBZ were satisfactorily modelled using U-PLS/RTL due to the loss of quadrilinearity caused by different phenomena. The profitable applicability of the analytical method in the CBZ, TBZ, PMM, and CLT determination in lemon juice samples was demonstrated, achieving limits of detection below the maximum residue levels reported by the European Commission, and mean recoveries at 90 ± 5%.


Assuntos
Praguicidas , Praguicidas/análise , Micelas , Calibragem , Benzimidazóis/análise , Tiabendazol , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA