Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Chemosphere ; 351: 141203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228194

RESUMO

Polybrominated diphenyl ethers (PBDE) are priority contaminants historically used as flame retardants. PBDEs are known to occur in wastewater biosolids posing potential concerns with the beneficial land application of the biosolids. This study evaluated the removal of 21 congeners in nine full-scale sludge treatment systems including pelletization (P), alkaline stabilization (AS), and aerobic (AE) and anaerobic (AN) digestion. It is the first study to conduct a mass balance analysis of a broad spectrum of PBDEs during physical, chemical, and biological sludge treatment. The PBDE congener pattern in raw sludge and biosolids samples was consistent with commercial formulations. The fully brominated congener BDE-209 dominated biosolids from all sites with an average concentration of 620 ng/g dry weight (dw), followed by BDE-99 (173 ng/g dw) and BDE-47 (162 ng/g dw). Mass balance analysis on the P and AS processes showed no change in PBDE mass flows with treatment. However, aerobic and anaerobic digestion processes reported significant levels of removal and formation of individual congeners, though the results were not consistent between facilities. One aerobic digestion process (AE2) reported an overall average removal of 48%, whereas the other (AE1) reported very high levels of accumulation of tri- and tetraBDE congeners. Similarly, there were significant variations in PBDE behavior across the five anaerobic digestion plants studied. The plant with the longest solids retention time (SRT) (AN1) reported a moderate removal (50%) of overall PBDE loading and lower congeners, whereas other plants (AN2-AN5) showed significant low (-19%) to high (-166%) levels of formation of lower congeners. The results suggest that reduced SRTs result in formation of lower congeners while extended SRTs can lead to moderate removal of some PBDEs. Conventional sludge treatment result in low to moderate PBDE removal and advanced thermal conversion technologies may be needed to improve the contaminant removal during sludge treatment.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Esgotos/análise , Éteres Difenil Halogenados/análise , Biossólidos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Retardadores de Chama/análise
2.
Bioresour Technol ; 393: 130174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072081

RESUMO

As dosing additives benefit for aerobic granular sludge (AGS) cultivation, effects of different concentrations (0, 10, 50 and 100 mg/L) of magnetic nanoparticles (Fe3O4 NPs) on aerobic granulation, contaminant removal and potential microbial community evolution related to acyl-homoserine lactones (AHLs) mediated bacterial communication were investigated with municipal wastewater. Results showed that the required time to achieve granulation ratio > 70 % was reduced by 60, 90 and 30 days in phase II with addition of 10, 50, 100 mg/L Fe3O4 NPs, respectively. 50 mg/L Fe3O4 NPs can improve contaminant removal efficiency. The promotion of relative abundance of AHLs-producing and AHLs-producing/quenching populations and AHLs-related functional genes accompanied with faster granulation. Iron-cycling-related bacteria were closely related with AHLs-related bacteria during AGS formation. Co-occurrence network analyses showed that AHLs-mediated communication may play an important role in coordinating microbial community composition and functional bacteria participating in nitrogen and polyphosphate metabolisms during aerobic granulation process.


Assuntos
Nanopartículas de Magnetita , Microbiota , Acil-Butirolactonas/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Percepção de Quorum , Esgotos/microbiologia
3.
Chemosphere ; 339: 139620, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37524265

RESUMO

Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.


Assuntos
Microbiota , Águas Residuárias , Fenol , Esgotos/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
4.
Chemosphere ; 338: 139520, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454986

RESUMO

Bioaugmentation by adding well-functioning mixed microorganism consortia represents a potentially useful approach to improve contaminant removal in wastewater treatment plants (WWTPs). However, unfavorable environmental conditions (i.e., low temperatures) can severely inhibit microbial activity, drawing our attention to constructing cold-tolerant microorganism preparations and investigating their availability in practical applications. Here we screened four in situ functional isolates from the activated sludge of secondary sedimentation tanks in WWTPs to construct a psychrophilic microbial consortium, which was used to perform bioaugmentation for enhanced removal of nitrogen and phosphorus under low temperatures. The consortium was established by cocultivation of four isolates, characterized by 16 S rRNA as the COD-degrading bacterium Aeromonas sp. Z3, aerobic denitrifying bacterium Acinetobacter sp. HF9, nitrifying bacterium Klebsiella sp. X8, and polyphosphate-accumulating bacterium Pseudomonas sp. PC5 respectively. The microorganism preparation was composed of Z3, HF9, X8, and PC5 under the ratio of 1: 1: 3: 1, which can exert optimal pollutant removal under the conditions of 12 °C, 6.0-9.0 pH, 120-200 r‧min-1, and a dosage of 5% (V/V). A 30-day continuous operation of the bioaugmented and control sequencing batch reactors (SBRs) was investigated, and the bioaugmented SBR showed a shorter start-up stage and a more stable operating situation. Compared to the control SBR, the COD, NH4+-N, TN, and TP removal efficiency of the bioaugmented SBR increased by an average of 7.95%, 9.05%, 9.54%, and 7.45% respectively. The analysis of the microbial community revealed that the introduced isolates were dominant in the activated sludge and that functional taxa such as Proteobacteria, Bacteroidota, and Actinobacteria were further enriched after a period of bioaugmentation. The study provides some basis and guidance for the practical application of how to strengthen the stable operation of WWTPs under low temperatures.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Bactérias/genética , Nitrogênio
5.
Bioresour Technol ; 384: 129346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336447

RESUMO

The stability of granules, contaminant removal and microbial structure of an aerobic granular sludge (AGS) process were investigated with a focus on ordinary heterotrophic organisms (OHOs). Long-term stable granules and high removals of COD (97 %), NH4+ (98 %), P (85 %) and total N (77 %) were achieved. Sequencing analyses identified 6.6 % of phosphorus-accumulating organisms in the sludge, concordant with the observed bio-P removal capacity. However, OHOs were the most abundant bacteria in the sludge (70-93 %) without resulting in unstable aggregates. Under current dogmas of microbial competition in activated sludge, it seemed contradictory that OHOs could persist in the long term in the AGS where COD was depleted beginning in the anaerobic phase. Microbial analyses showed that OHOs could survive in granules by micropredation, proteolysis, fermentation and EPS consumption. Heterotrophic-nitrification/ aerobic-denitrification was an active pathway in the AGS. These findings contribute to a better understanding of microbial competition in AGS and its stability.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Nitrificação , Fósforo/metabolismo , Aerobiose
6.
Sci Total Environ ; 895: 165010, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353018

RESUMO

Quaternary ammonium compounds (QACs) are a kind of biocides and surfactants widely used around the world and wastewater treatment systems were identified as its largest pool. QACs could significantly inhibit microbial activity in biological treatment. Aerobic granular sludge (AGS) is an emerging wastewater biological treatment technology with high efficiency and resistance, but it is still unclear if AGS system could tolerate QACs shock. In this study, a typical QAC (benzalkonium chloride (BACC12)) was selected to investigate its effect on AGS system. Results indicate that BAC could inhibit the pollutants removal performance of AGS system, including COD, NH4+-N and PO43- in the short term and the inhibition ratio had positive correlation with BAC concentration. However, AGS system could gradually adapt to the BAC stress and recover its original performance. BAC shock could destroy AGS structure by decreasing its particle size and finally leading to particle disintegration. Although AGS could secret more EPS to resist the stress, BAC still had significant inhibition on cell activity. Microbial community analysis illustrated that after high BAC concentration shock in short term, Thauera decreased significantly while Flavobacterium became the dominant genus. However, after the performance of AGS system recovered the dominant genus returned to Thauera and relevant denitrifiers Phaeodactylibacter, Nitrosomonas and Pseudofulvimonas also increased. The typical phosphorous removal microorganism Rubrivivax and Leadbetterella also showed the similar trend. The variation of denitrification and phosphorus removal microbial community was consistent with AGS system performance indicating the change of functional microorganism played key role in the AGS response to BAC stress.


Assuntos
Compostos de Benzalcônio , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Nitrogênio , Águas Residuárias , Aerobiose , Eliminação de Resíduos Líquidos
7.
Chem Asian J ; 18(13): e202300256, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37199670

RESUMO

The selectivity of catalytic materials suitable for oxygen reduction potential of bio-electrochemical systems is very affluent. Therefore, exploring magnetite and static magnetic field as alternative option to promote microbial electron transfer comes in handy. In this study, the application of magnetite-nanoparticles and a static magnetic field on a microbial fuel cell (MFC) in anaerobic digestion was investigated. The experimental set-up included four 1 L biochemical methane potential tests: a) MFC, b) MFC with magnetite-nanoparticles (MFCM), c) MFC with magnetite-nanoparticles and magnet (MFCMM), and d) control. The highest biogas production obtained was 545.2 mL/g VSfed in the MFCMM digester, which was substantially greater than the 117.7 mL/g VSfed of the control. This was accompanied by high contaminant removals for chemical oxygen demand (COD) of 97.3%, total solids (TS) of 97.4%, total suspended solids (TSS) of 88.7%, volatile solids (VS) 96.1%, and color of 70.2%. The electrochemical efficiency analysis revealed greater maximum current density of 12.5 mA/m2 and coulombic efficiency of 94.4% for the MFCMM. Kinetically, the cumulative biogas produced data obtained were well fitted on the modified Gompertz models and the greatest coefficient of determination (R2 =0.990) was obtained in the MFCMM. Therefore, the application of magnetite-nanoparticles and static magnetic field on MFC showed a high potential for bioelectrochemical methane production and contaminant removal for sewage sludge.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas de Magnetita , Anaerobiose , Óxido Ferroso-Férrico , Biocombustíveis , Reatores Biológicos , Esgotos , Metano
8.
Chemosphere ; 332: 138855, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149101

RESUMO

Progress in excogitation suitable strategies for monitoring chemical compounds in wastewater is an essential step for further research into the occurrence, impact, and fate of the pollutants in the aquatic environment. At present, it is desirable to advance and use economical, environmentally friendly and non-labour intensive methods of environmental analysis. In this study, carbon nanotubes (CNTs) were successfully applied, regenerated, and reused as a sorbent in passive samplers for monitoring contaminants in treated and untreated wastewater at three wastewater treatment plants (WWTPs) located in different urbanization areas in northern Poland. Three cycles of chemical and thermal regeneration of used sorbents were performed. It was shown that it is possible to regenerate CNTs a minimum of three times and reuse them in passive samplers while maintaining the desired sorption properties. The obtained results confirm that the CNTs are perfectly in line with the main principles of green chemistry and sustainability. Carbamazepine, ketoprofen, naproxen, diclofenac, p-nitrophenol, atenolol, acebutolol, metoprolol, sulfapyridine and sulfamethoxazole were detected in each of the WWTPs, both in treated and untreated wastewater. The obtained data drastically show the inefficiency of the removal of contaminants by conventional WWTPs. More importantly, the results even indicate negative contaminant removal in most cases, i.e. higher concentrations (up to 863%) of these substances in the effluent compared to the influent.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Águas Residuárias , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Carbamazepina/análise
9.
Int J Phytoremediation ; 25(11): 1542-1557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880391

RESUMO

The performance of two tropical plants, Rhynchospora corymbosa L. (RC) and Coix lacryma-jobi, L (CL) in treatment of primary sewage effluent in lab-scale vertical-flow constructed wetlands (VFCW) along with no plant control wetland was investigated. A batch-flow VFCWs were operated under batch fill and drain hydraulic loading system with hydraulic retention times (HRT) of 0.5, 1, and 2 days and fill rate of 8 L/day. Removal of solids, organics, nutrients, and pathogens were monitored. The volumetric contaminant removal rates were best described by 1st order kinetics except for ammonia and phosphate, which was best described by Stover-Kincannon kinetics. Influent TSS, PO43-, COD, BOD5, and total coliform concentration were low but high in NH4+ concentration. CL was better in nutrient removal as HRT increases compared to RC. RC was more efficient at TSS, turbidity, and organics removal. Pathogen removal was independent of plant type but HRT. Solids and organic removal were lower in CL planted CWs due to preferential flow paths created by their bulky root. CL planted CWs removed more nutrients followed by RC planted CWs and then no-plant control CWs. The results of these tests demonstrate that both CL and RC are suitable for the treatment of municipal wastewater in VFCW system.


Assuntos
Coix , Esgotos , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Nitrogênio/análise , Biodegradação Ambiental , Plantas
10.
Environ Sci Pollut Res Int ; 30(14): 39431-39450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36763272

RESUMO

Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.


Assuntos
Poluentes Químicos da Água , Água , Esgotos , Minerais , Catálise , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução
11.
Environ Res ; 221: 115245, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640939

RESUMO

nanofiltration membrane concentrate (NMC) is an emerging type of wastewater with significant environmental concerns. which can be treated efficiently by an integrated method. In this study, magnetic biochar (MBC) pretreatment integrated with anaerobic digestion (AD) (MBC + AD) was used to treat NMC. Results showed that under the optimal MBC + AD conditions, 79%, 69.4%, 52.9%, and 86.5% of COD, total nitrogen (TN), chromaticity, and light absorbing substances were reduced. For heavy metals removal, 18.3%, 70.0%, 96.4%, 43.8% and 97.5% of Cr (VI), Cd, Pb, Cu and Zn were removed, respectively. LC-MS analysis indicated that p-nitrophenol (4-NP) diethyl and phthalate (DEP) were the main organic pollutants in NMC with a removal rate of 60% and 90%. Compared with single AD, in MBC + AD samples, bacterial activity was improved, and genus DMER64 (23.2%) was dominant. The predominant archaea were Methanocorpusculum (53.3%) and Methanosarcina (25.3%), with microbial restructuring and slight methane generation. Additionally, metabolic pathway prediction revealed that both bacterial and archaeal metabolism were significantly enhanced, contributing to the central functional pathways, namely microbial activity metabolism and biodegradation metabolism. In addition, the significantly increased genera Syner-01, Vulcanibacillus, Methanocorpusculum, and Norank_c_Bathyarchaeia were significantly positively related to metabolic function. This finding demonstrated that MBC + AD enhanced contaminant removal, mainly by regulating bacterial diversity and activity. Moreover, the toxicity of NMC decreased after MBC + AD treatment. This study provides a potential biological strategy for the treatment of membrane concentrates and water recovery.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Anaerobiose , Bactérias/metabolismo , Archaea/metabolismo , Fenômenos Magnéticos , Reatores Biológicos/microbiologia , Metano
12.
Artigo em Inglês | MEDLINE | ID: mdl-36231490

RESUMO

A review of the characterization and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems is presented in this paper. EPS represent the complex high-molecular-weight mixture of polymers excreted by microorganisms generated from cell lysis as well as adsorbed inorganic and organic matter from wastewater. EPS exhibit a three-dimensional, gel-like, highly hydrated matrix that facilitates microbial attachment, embedding, and immobilization. EPS play multiple roles in containments removal, and the main components of EPS crucially influence the properties of microbial aggregates, such as adsorption ability, stability, and formation capacity. Moreover, EPS are important to sludge bioflocculation, settleability, and dewatering properties and could be used as carbon and energy sources in wastewater treatment. However, due to the complex structure of EPS, related knowledge is incomplete, and further research is necessary to understand fully the precise roles in biological treatment processes.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Purificação da Água , Carbono , Polímeros/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
13.
Environ Monit Assess ; 194(12): 884, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239735

RESUMO

In the last few decades, environmental contaminants (ECs) have been introduced into the environment at an alarming rate. There is a risk to human health and aquatic ecosystems from trace levels of emerging contaminants, including hospital wastewater (HPWW), cosmetics, personal care products, endocrine system disruptors, and their transformation products. Despite the fact that these pollutants have been introduced or detected relatively recently, information about their characteristics, actions, and impacts is limited, as are the technologies to eliminate them efficiently. A wastewater recycling system is capable of providing irrigation water for crops and municipal sewage treatment, so removing ECs before wastewater reuse is essential. Water treatment processes containing advanced ions of biotic origin and ECs of biotic origin are highly recommended for contaminants. This study introduces the fundamentals of the treatment of tertiary wastewater, including membranes, filtration, UV (ultraviolet) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Next, a detailed description of recent developments and innovations in each component of the emerging contaminant removal process is provided.


Assuntos
Cosméticos , Disruptores Endócrinos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Ecossistema , Disruptores Endócrinos/análise , Monitoramento Ambiental , Humanos , Esgotos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 847: 157402, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35850326

RESUMO

As a powerful oxidizing agent, potassium permanganate (KMnO4) has attracted widespread interest in sludge treatment and contaminant removal. However, its effect on the anaerobic digestion of waste activated sludge (WAS) is ambiguous. This investigation was designed to provide perspectives into this problem. In comparison with the control, 0.3 g KMnO4/g TSS pretreatment enhanced the methane production by 78.82 %. Model analysis demonstrated that the KMnO4 pretreatment enhanced the biochemical methane potential (B0) of WAS. Mechanistic studies elucidated that the KMnO4 pretreatment process generated reactive radicals such as ·OH, ·O2- and 1O2, which contributed to sludge disintegration and biodegradation process of dissolved substances, thus resulting in more substances available for subsequent methane generation. Enzyme activity analysis indicated that KMnO4 pretreatment facilitated the activities of key enzymes associated with anaerobic digestion to various degrees. Microbial analysis illustrated that the relative abundance of functional microorganisms was significantly elevated after KMnO4 pretreatment, which was conducive to methane production.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Cinética , Metano/metabolismo , Oxidantes , Permanganato de Potássio , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
15.
J Hazard Mater ; 429: 128405, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236030

RESUMO

Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 µmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.


Assuntos
Compostagem , Microplásticos , Radicais Livres , Plásticos , Esgotos
16.
Environ Res ; 207: 112212, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662578

RESUMO

Developing filtering materials with high permeation flux and contaminant removal rate is of great importance for oily wastewater remediation. Herein, a robust three-dimensional (3D) activated carbon fibers (ACFs) based composite with uniformly grown layered double hydroxide (LDH) on the surface was successfully constructed through a feasible hydrothermal strategy. The LDH with a high surface energy and vertically aligned structure could provide superhydrophilicity to ACFs. Systematic investigation confirmed that the 3D material could overcome the size mismatch between the ACFs macropores and tiny emulsified droplets through the combination of size-sieving filtration on the surface and oil droplet coalescence in the fiber network. This process efficiently separated the intractable surfactant-stabilized oil-in-water emulsions with high permeation flux (up to 4.16 × 106 L m-2 h-1 bar-1). Notably, the LDH also had well-dispersed catalytic active sites, which could initiate advanced oxidation processes (AOPs) to efficiently eliminate various types of water-soluble organic pollutants (e.g., pharmaceuticals, phenolic compounds and organic dyes). The resulting modified ACFs exhibited exceptional removal rates for both oil and organic pollutants in the complex sewage during the continuous filtration process. These versatile abilities integrated with the facile preparation method reported herein provide outstanding prospects for the large-scale treatment of oily wastewater.


Assuntos
Carvão Vegetal , Águas Residuárias , Fibra de Carbono , Óleos/química , Esgotos
17.
J Environ Manage ; 298: 113469, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399372

RESUMO

This study examined the effect of electrokinetic pretreatment on petroleum sludge (PS) released from the wastewater treatment plants of petrochemical industries for enhanced biodegradation and contaminant removal. The application of electric field on PS through direct current is optimized with the combined variation of applied voltage (40-80 V), exposure duration (20-120 min) and distance between graphite electrodes (8-16 cm) using central composite design-response surface methodology (CCD-RSM). The optimization study revealed significant interaction among the response variables to obtain an optimum condition (60 V, 83.5 min, 11.6 spacing) for maximization of solubilization in terms of soluble chemical oxygen demand (230% increment against untreated) and volatile fatty acids (172% increment against untreated) concentrations for accelerated hydrolysis of complex PS. BMP batch assays were performed at different inoculum and sludge ratios (0.3, 0.4, 0.5 and 0.7) based on volatile solids content after pretreatment at the optimized condition which resulted in accumulated methane ranging from 5.16 to 6.61 L/gVSadded (untreated - 3.9 L/gVSadded). The mixing ratio of 0.4 showed the maximum methane enhancement of 69.2% compared to untreated. The maximum removal of organic content (62.8%), oil and grease (71.74%), and total petroleum hydrocarbon (52.9%) were also observed for the mixing ratio of 0.4. The FTIR study showed the efficacy in hydrocarbon dissociation and decomposition after pretreatment of PS. The net energy gain (3508 kJ) and phytotoxicity reduction of batch digestate after the anaerobic digestion suggest the economic feasibility and decontamination efficiency of the electrokinetic pretreatment technique respectively. Further research could be performed to evaluate the viability of this pretreatment for enhanced methane recovery at field-scale levels to relate to these lab-scale postulations.


Assuntos
Petróleo , Esgotos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Metano
18.
J Environ Manage ; 292: 112696, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33984643

RESUMO

Aerobic granular sludge (AGS) is a promising technology in treating saline wastewater. The effects of sodium sulfate on contaminant removal performance and sludge characteristics of AGS were studied. The results showed that under the stress of sodium sulfate, AGS kept good removal performance of ammonia nitrogen (NH+ 4-N), chemical oxygen demand (COD), and total nitrogen (TN), with removal efficiency reaching 98.7%, 91.5% and 62.7%, respectively. When sodium sulfate reached 14700 mg/L, nitrite oxidizing bacteria (NOB) were inhibited and nitrite accumulation occurred, but it had little impact on total phosphorus (TP) removal. Under the stress of sodium sulfate, compactness and settling performance of AGS was enhanced. The microbial community greatly varied and the microbial diversity of aerobic granular sludge has decreased under the stress of sodium sulfate. The study reveals that AGS has great potential in application on treating saline wastewater.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Águas Residuárias
19.
Environ Monit Assess ; 193(5): 289, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33886032

RESUMO

In Brazil, wastewater treatment coverage is low. Even when treatment is carried out, many municipalities cannot achieve adequate levels of contaminant removal, and the usual practice of releasing raw or treated domestic effluent into water bodies remains. Thus, this pollution source puts pressure on water resources, compromising downstream uses of the disposal. This study has two aims: (1) to evaluate the performance of sewage treatment plants and (2) to determine the impact of discharging treated effluent on the water quality of receiving water bodies located within an urbanized area in the Velhas River basin, Minas Gerais State, Brazil. Monitoring data from raw wastewater were compared with typical ranges reported in literature, and effluent concentrations were compared between plants. The monitoring data of the receiving water bodies collected at points upstream and downstream of each disposal were statistically compared. Different performances between the systems and significant alterations in the receiving bodies resulting from the discharge of the treated effluents were found.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Brasil , Cidades , Monitoramento Ambiental , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Water Sci Technol ; 83(8): 1781-1796, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905352

RESUMO

Organochlorines have diverse structures and applications and are included in the list of persistent organic pollutants (POPs) due to their toxicity and environmental persistence. The reduced capacity of conventional wastewater treatment plants to remove these compounds encourages the development of cost-effective and efficient remediation approaches. Fungal biotechnology can contribute to the development of these technologies through their enzymatic machinery but faces several drawbacks related to the use of dispersed mycelium. In this sense, investigations concerning the degradation of organochlorines using immobilized fungi demonstrated an increase in contaminant removal efficiency compared with degradation by free cells. Despite this interest, the mechanisms of immobilized fungi have not been comprehensively reviewed. In this paper, recent advances of laboratory and field studies in organochlorine compounds removal by fungi are reviewed, focusing on the role of immobilization techniques. Firstly, the mechanisms of organochlorines bioconversion by fungi and the factors affecting enzyme activity are elucidated and discussed in detail. Then, the main targeted compounds, fungi, technics, and materials used for immobilization are discussed, as well as their advantages and limitations. Furthermore, critical points for future studies of fungi immobilization for organochlorine removal are proposed.


Assuntos
Hidrocarbonetos Clorados , Purificação da Água , Fungos , Micélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...