Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Front Med (Lausanne) ; 11: 1424753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281811

RESUMEN

Objective: This study aims to clinically and genetically assess 30 unrelated consanguineous Pakistani families from various ethnic backgrounds, all exhibiting features of neurodevelopmental disorders (NDDs). Methods: We conducted clinical, genetic, biochemical, and molecular analyses on 30 consanguineous families with NDDs enrolled from various regions of Pakistan. The likely molecular causes of primary microcephaly and NDDs were identified. Detailed clinical investigations and molecular diagnoses were performed using whole exome sequencing (WES) of the proband, followed by Sanger sequencing for validation and segregation in the available family members of the affected families. Results: WES identified likely disease-causing homozygous variants in 30 unrelated consanguineous families. Six families presented newly described variants in known NDD-related genes: ABAT (c.1439 T > G; p.Phe480Cys) [OMIM613163], SLC12A6 (c.2865_2865insT; p.Glu955Asnfs*5) [OMIM 218000], SHANK3 (c.1305-3_1,305-2delTT; p.Gln29-_Gly305del) [OMIM 606232], BCKDK (c.356_356insC; p.Gly119Alafs*24) [OMIM 614923], DDHD2 (c.2065G > T; p.Asp689Tyr) [OMIM 615033], ERCC2 (c.1255G > A; p.Glu419Lys) [OMIM 610756]. Additionally, 12 families had previously reported disease-causing variants associated with different types of NDDs: ATRX (c.109C > T; p.Arg37*) [OMIM 309580], GPR56 [ADGRG1] (c.1423C > T; p.Arg475*) [OMIM 606854], NAGLU (c.1694G > A; p.Arg565Gln) [OMIM 252920], DOLK (c.3G > A; p.Met1Ile) [OMIM 610768], GPT2 (c.815C > T; p.Ser272Leu) [OMIM 616281], DYNC1I2 (c.607 + 1G > A; p.?) [OMIM 618492], FBXL3 (c.885delT; p.Leu295Phefs25*) [OMIM 606220], LINGO1 (c.869G > A; p.Arg290His) [OMIM 618103], and ASPM (c.3978G > A; Trp1326*, c.9557C > G; p.Ser3186*, c.6994C > T; p.Arg2332*) [OMIM 608716]. All the identified variants showed segregation compatible with autosomal recessive inheritance. Conclusion: In the present study, we observed a high frequency of ASPM variants in the genetic analysis of 30 consanguineous families exhibiting features of NDDs, particularly those associated with autosomal recessive primary microcephaly. These findings contribute to studies on genotype-phenotype correlation, genetic counseling for families, and a deeper understanding of human brain function and development.

2.
RSC Adv ; 14(40): 29260-29270, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39285875

RESUMEN

The emergence of multiferroic materials particularly bismuth iron oxide (BiFeO3) with distinctive magnetoelectric, and high energy storage capabilities, present pivotal aspects for next-generation memory storage devices. However, intrinsically weak magnetoelectric coupling limits their widespread applications, that can be leap over by the integration of BiFeO3 with enriched ferroelectric, and ferro/ferrimagnetic materials. Here, a series (1 - x)[0.7BiFeO3 + 0.3MnMoO4] + xNiFe2O4 (x = 0.00, 0.03, 0.06, and 0.09) is synthesized via citrate-gel based self-ignition, and solid-state reaction routes. Phase purity and crystallinity of tri-phase composites with surfaces revealing random and arbitrarily shaped grains are assured by X-ray diffraction, and field emission scanning electron microscopy, respectively. Dielectric studies illustrated non-linear trend for broad range of frequencies as predicted by Maxwell-Wagner theory along with single semicircle arcs in Nyquist plots that exposes grain boundaries effect. An enriched 68.42% of ferroelectric efficiency is featured for x = 0.06 substitutional contents, while magnetic computations demonstrated improved saturation magnetization (M s), remanence magnetization (M r), and coercive applied magnetic field (H c) values as 5.87 emu g-1, 0.96 emu g-1, and 215.19 Oe, respectively for x = 0.09 phase-fraction. The intriguing linear trends of magnetoelectric coupling for all the compositions are corroborating them propitious contenders for futuristic multistate devices.

3.
Am J Hum Genet ; 111(9): 2012-2030, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39191256

RESUMEN

Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.


Asunto(s)
Linaje , Polimorfismo de Nucleótido Simple , Retinitis Pigmentosa , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven , Alelos , Haplotipos , Heterocigoto , Homocigoto , Proteínas de la Membrana/genética , Fenotipo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología
4.
BMC Genomics ; 25(1): 787, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143522

RESUMEN

BACKGROUND/OBJECTIVES: This study aims to elucidate the genetic causes of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder resulting in GnRH deficiency, in six families from Pakistan. METHODS: Eighteen DNA samples from six families underwent genome sequencing followed by standard evaluation for pathogenic single nucleotide variants (SNVs) and small indels. All families were subsequently analyzed for pathogenic copy number variants (CNVs) using CoverageMaster. RESULTS: Novel pathogenic homozygous SNVs in known CHH genes were identified in four families: two families with variants in GNRHR, and two others harboring KISS1R variants. Subsequent investigation of CNVs in the remaining two families identified novel unique large deletions in ANOS1. CONCLUSION: A combined, systematic analysis of single nucleotide and CNVs helps to improve the diagnostic yield for variants in patients with CHH.


Asunto(s)
Variaciones en el Número de Copia de ADN , Hipogonadismo , Linaje , Polimorfismo de Nucleótido Simple , Humanos , Hipogonadismo/genética , Pakistán , Masculino , Femenino , Receptores de Kisspeptina-1/genética , Secuenciación Completa del Genoma , Receptores LHRH/genética , Adulto , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso , Proteínas de la Matriz Extracelular
5.
Front Neurosci ; 18: 1431400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010945

RESUMEN

Cohen Syndrome (CS) is a rare autosomal recessive disorder caused by biallelic mutations in the VPS13B gene. It is characterized by multiple clinical features, including acquired microcephaly, developmental delay, intellectual disability, neutropenia, and retinal degeneration. VPS13B is part of the bridge-like lipid transport (BLTP) protein family, which in mammals also includes VPS13A, -C, and -D. The proteins of this family are peripheral membrane proteins with different sub-cellular localization, but all share similar structural features and have been proposed to act as lipid transport proteins at organellar membrane contact sites. VPS13B is localized at the Golgi apparatus and is essential for the maintenance of organelle architecture. Here we present a review of the experimental data on the function of the protein at the cellular level, discussing the potential link with disease phenotype and review the studies on animal models recapitulating features of the human disease.

6.
Clin Genet ; 106(3): 347-353, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38774940

RESUMEN

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.


Asunto(s)
Enanismo , Secuenciación del Exoma , Mutación , Linaje , Humanos , Femenino , Masculino , Enanismo/genética , Niño , Pakistán/epidemiología , Predisposición Genética a la Enfermedad , Homocigoto , Fenotipo , Síndrome , Preescolar , Adolescente , Estudios de Asociación Genética
7.
Exp Eye Res ; 244: 109945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815792

RESUMEN

Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.


Asunto(s)
Consanguinidad , Secuenciación de Nucleótidos de Alto Rendimiento , Linaje , Humanos , Pakistán , Masculino , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Niño , Mutación , Adulto , Adolescente , Análisis Mutacional de ADN , Adulto Joven , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/diagnóstico , Preescolar , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma
8.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157168

RESUMEN

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Asunto(s)
Aguas Residuales , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Lignina , Reactores Biológicos
9.
Eur J Hum Genet ; 31(12): 1447-1454, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821758

RESUMEN

Intellectual disability (ID) and retinal dystrophy (RD) are the frequently found features of multiple syndromes involving additional systemic manifestations. Here, we studied a family with four members presenting severe ID and retinitis pigmentosa (RP). Using genome wide genotyping and exome sequencing, we identified a nonsense variant c.747 C > A (p.Tyr249Ter) in exon 7 of AGPAT3 which co-segregates with the disease phenotype. Western blot analysis of overexpressed WT and mutant AGPAT3 in HEK293T cells showed the absence of AGPAT3, suggesting instability of the truncated protein. Knockdown of Agpat3 in the embryonic mouse brain caused marked deficits in neuronal migration, strongly suggesting that reduced expression of AGPAT3 affects neuronal function. Altogether, our data indicates that AGPAT3 activity is essential for neuronal functioning and loss of its activity probably causes intellectual disability and retinitis pigmentosa (IDRP) syndrome.


Asunto(s)
Discapacidad Intelectual , Retinitis Pigmentosa , Animales , Humanos , Ratones , Exoma , Células HEK293 , Discapacidad Intelectual/genética , Mutación , Linaje , Retinitis Pigmentosa/genética
10.
Genes (Basel) ; 14(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37628625

RESUMEN

Anophthalmia and microphthalmia (A/M) are among the most severe congenital developmental eye disorders. Despite the advancements in genome screening technologies, more than half of A/M patients do not receive a molecular diagnosis. We included seven consanguineous families affected with A/M from Pakistani cohort and an unknown molecular basis. Single gene testing of FOXE3 was performed, followed by genome sequencing for unsolved probands in order to establish a genetic diagnosis for these families. All seven families were provided with a genetic diagnosis. The identified variants were all homozygous, classified as (likely) pathogenic and present in an A/M-associated gene. Targeted FOXE3 sequencing revealed two previously reported pathogenic FOXE3 variants in four families. In the remaining families, genome sequencing revealed a known pathogenic PXDN variant, a novel 13bp deletion in VSX2, and one novel deep intronic splice variant in PXDN. An in vitro splice assay was performed for the PXDN splice variant which revealed a severe splicing defect. Our study confirmed the utility of genome sequencing as a diagnostic tool for A/M-affected individuals. Furthermore, the identification of a novel deep intronic pathogenic variant in PXDN highlights the role of non-coding variants in A/M-disorders and the value of genome sequencing for the identification of this type of variants.


Asunto(s)
Anoftalmos , Anomalías del Ojo , Microftalmía , Humanos , Anoftalmos/diagnóstico , Anoftalmos/genética , Microftalmía/diagnóstico , Microftalmía/genética , Mapeo Cromosómico , Pruebas Genéticas
11.
Neurobiol Dis ; 185: 106259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37573958

RESUMEN

The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.


Asunto(s)
Microcefalia , Degeneración Retiniana , Niño , Humanos , Masculino , Femenino , Animales , Ratones , Microcefalia/genética , Microcefalia/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Degeneración Retiniana/genética , Discapacidades del Desarrollo/genética , Fenotipo
12.
Mol Biol Rep ; 50(9): 7935-7939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37470964

RESUMEN

BACKGROUND: Neonatal progeroid disorders are rare disorders with clinical features including low body mass index, proptosis, aged and dysmorphic facial features at the time of birth, prominent veins, sparse scalp hairs, and severe growth retardation. Very few cases have been identified with an unknown genetic cause. Here, we report clinical and genetic findings of a proband with hallmark features of neonatal progeria. METHODS: Microarray comparative genomic hybridization, whole exome sequencing (WES) and Sanger sequencing were performed using standard methods. RESULTS: Array combined genome hybridization data revealed trisomy 18 in the proband (II-1), and WES data identified novel compound heterozygous variants (c.247 C > T; p.H83Y and c.14769868InsA) in the FREM1 gene. CONCLUSION: We report a novel complex case of neonatal progeria with atrial septal defects, trisomy 18 without typical features of Edward syndrome. The phenotype of the patient was more consistent with neonatal progeria, thus we speculate it to be caused by the FREM1 variants.


Asunto(s)
Progeria , Humanos , Progeria/genética , Síndrome de la Trisomía 18 , Hibridación Genómica Comparativa , Fenotipo , Mutación
13.
J Gene Med ; 25(10): e3513, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37178061

RESUMEN

BACKGROUND: Population diversity is important and rare disease isolates can frequently reveal novel homozygous or biallelic mutations that lead to expanded clinical heterogeneity, with diverse clinical presentations. METHODS: The present study describes two consanguineous families with a total of seven affected individuals suffering from a clinically similar severe syndromic neurological disorder, with abnormal development and central nervous system (CNS) and peripheral nervous system (PNS) abnormalities. Whole exome sequencing (WES) and Sanger sequencing followed by 3D protein modeling was performed to identify the disease-causing gene. RNA was extracted from the fresh blood of both families affected and healthy individuals. RESULTS: The families were clinically assessed in the field in different regions of Khyber Pakhtunkhwa. Magnetic resonance imagining was obtained in the probands and blood was collected for DNA extraction and WES was performed. Sanger sequencing confirmed a homozygous, likely pathogenic mutation (GRCh38: chr17:42684199G>C; (NM_003632.3): c.333G>C);(NP_003623.1): p.(Trp111Cys) in the CNTNAP1 gene in family A, previously associated with Congenital Hypo myelinating Neuropathy 3 (CHN3; OMIM # 618186) and a novel nonsense variant in family B, (GRCh38: chr16: 57654086C>T; NC_000016.10 (NM_001370440.1): c.721C>T); (NP_001357369.1): p.(Gln241Ter) in the ADGRG1 gene previously associated with bilateral frontoparietal polymicrogyria (OMIM # 606854); both families have extended CNS and PNS clinical manifestations. In addition, 3D protein modeling was performed for the missense variant, p.(Trp111Cys), identified in the CNTNAP1, suggesting extensive secondary structure changes that might lead to improper function or downstream signaling. No RNA expression was observed in both families affected and healthy individuals hence showing that these genes are not expressed in blood. CONCLUSIONS: In the present study, two novel biallelic variants in the CNTNAP1 and ADGRG1 genes in two different consanguineous families with a clinical overlap in the phenotype were identified. Thus, the clinical and mutation spectrum is expanded to provide further evidence that CNTNAP1 and ADGRG1 are very important for widespread neurological development.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Mutación Missense , Humanos , Consanguinidad , Mutación , Genes Recesivos , Fenotipo , Moléculas de Adhesión Celular Neuronal/genética
14.
Genet Med ; 25(9): 100900, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37226891

RESUMEN

PURPOSE: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS: We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Homocigoto , Trastornos del Neurodesarrollo/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN , Linaje , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
15.
Ophthalmic Res ; 66(1): 878-884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37094557

RESUMEN

INTRODUCTION: Retinitis pigmentosa (RP) is a rare degenerative retinal disease caused by mutations in approximately seventy genes. Currently, despite the availability of large-scale DNA sequencing technologies, ∼30-40% of patients still cannot be diagnosed at the molecular level. In this study, we investigated a novel intronic deletion of PDE6B, encoding the beta subunit of phosphodiesterase 6 in association with recessive RP. METHODS: Three unrelated consanguineous families were recruited from the northwestern part of Pakistan. Whole exome sequencing was performed for the proband of each family, and the data were analyzed according to an in-house computer pipeline. Relevant DNA variants in all available members of these families were assessed through Sanger sequencing. A minigene-based splicing assay was also performed. RESULTS: The clinical phenotype for all patients was compatible with rod cone degeneration, with the onset during childhood. Whole exome sequencing revealed a homozygous 18 bp intronic deletion (NM_000283.3:c.1921-20_1921-3del) in PDE6B, which co-segregated with disease in 10 affected individuals. In vitro splicing tests showed that this deletion causes aberrant RNA splicing of the gene, leading to the in-frame deletion of 6 codons and, likely, to disease. CONCLUSION: Our findings further expand the mutational spectrum of the PDE6B gene.


Asunto(s)
Retinitis Pigmentosa , Humanos , Análisis Mutacional de ADN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Mutación , Empalme del ARN , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Linaje , Proteínas del Ojo/genética
16.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041148

RESUMEN

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Asunto(s)
Síndrome de Goldenhar , Animales , Ratones , Síndrome de Goldenhar/patología , Asimetría Facial , Linaje , Factores de Transcripción Forkhead
17.
BMC Plant Biol ; 23(1): 137, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907856

RESUMEN

Seed shattering is a critical challenge that significantly reduces sesame production by 50%. These shattering losses can be reduced by selecting shattering resistant genotypes or by incorporating modern agronomic management such as paclobutrazol, which can boost productivity and prevent seed shattering in sesame. Two-years of field trials were conducted to examine the effect of sesame genotypes, environment, and paclobutrazol (PBZ) concentrations. Twelve sesame genotypes were used in a four-way factorial RCBD with three replications and five PBZ concentrations (T0 = Control; T1 = 150; T2 = 300; T3 = 450; and T4 = 600 mg L- 1) under rainfed conditions of Pothwar. The findings revealed significant variations in the major effects of all examined variables (genotypes, locations, years, and PBZ levels). Sesame genotypes PI-154304 and PI-175907 had the highest plant height, number of capsule plant- 1, seed capsule- 1, 1000 seed weight, biological yield, and seed yield, while also having the lowest seed losses and shattering percentage. Regarding environments, NARC-Islamabad generated the highest plant height, number of capsule plant- 1, shattering percentage, and biological yield; however, the URF-Koont produced the highest seed yield with the lowest shattering percentage. Additionally, plant height, capsules plant- 1, and biological yield were higher in 2021, while seed capsule- 1, 1000 seed weight, seed losses, shattering percentage, and seed yield were higher in 2020. PBZ concentration affected all measured parameters; plant height and number of seed capsule- 1 decreased with increasing PBZ concentrations. 450 mg L- 1 PBZ concentration generated the highest biomass, number of capsules plant- 1, and seed yield. At the same time, PBZ concentration 600 mg L- 1 generated the smallest plant, the lowest seed capsules- 1, the greatest thousand seed weight, and the lowest shattering percentage. The study concluded that paclobutrazol could dramatically reduce shattering percentage and shattering losses while increasing economic returns through better productivity. Based on the findings, the genotypes PI-154304 and PI-175907 with paclobutrazol level 450 mgL- 1 may be suggested for cultivation in Pothwar farming community under rainfed conditions, as they showed promising shattering resistance as well as enhanced growth and yield.


Asunto(s)
Enfermedades de las Plantas , Sesamum , Triazoles , Cápsulas , Genotipo , Sesamum/genética , Sesamum/microbiología , Triazoles/farmacología , Enfermedades de las Plantas/microbiología
18.
Genes (Basel) ; 14(3)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36980979

RESUMEN

GEMIN5 is a multifunctional RNA-binding protein required for the assembly of survival motor neurons. Several bi-allelic truncating and missense variants in this gene are reported to cause a neurodevelopmental disorder characterized by cerebellar atrophy, intellectual disability (ID), and motor dysfunction. Whole exome sequencing of a Pakistani consanguineous family with three brothers affected by ID, cerebral atrophy, mobility, and speech impairment revealed a novel homozygous 3bp-deletion NM_015465.5:c.3162_3164del that leads to the loss of NM_015465.5 (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) amino acid in one of the α-helixes of the tetratricopeptide repeats of GEMIN5. In silico 3D representations of the GEMIN5 dimerization domain show that this variant likely affects the orientation of the downstream sidechains out of the helix axis, which would affect the packing with neighboring helices. The phenotype of all affected siblings overlaps well with previously reported patients, suggesting that NM_015465.5: c.3162_3164del (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) is a novel GEMIN5 pathogenic variant. Overall, our data expands the molecular and clinical phenotype of the recently described neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Discapacidad Intelectual/etiología , Repeticiones de Tetratricopéptidos , Linaje , Trastornos del Neurodesarrollo/complicaciones , Atrofia/genética , Proteínas del Complejo SMN/genética
19.
Genes (Basel) ; 14(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980992

RESUMEN

Molybdenum cofactor deficiency type B (MOCODB; #252160) is an autosomal recessive metabolic disorder that has only been described in 37 affected patients. In this report, we describe the presence of an in-frame homozygous variant (c.471_477delTTTAAAAinsG) in the MOCS2 gene in an affected child, diagnosed with Ohtahara syndrome according to the clinical manifestations. The analysis of the three-dimensional structure of the protein and the amino acid substitutions suggested the pathogenicity of this mutation. To prevent transmitting this mutation to the next generation, we used preimplantation genetic testing for the monogenic disorders (PGT-M) protocol to select MOCS2 gene mutant-free embryos for transfer in an in vitro fertilization (IVF) program. As a result, a healthy child was born. Interestingly, both parents of the proband shared an identical mitochondrial (mt) DNA control region, assuming their close relationship and thus suggesting that both copies of the nuclear rare variant c.471_477delTTTAAAAinsG may have been transmitted from the same female ancestor. Our estimation of the a priori probability of meeting individuals with the same mtDNA haplotype confirms the assumption of a possible distant maternal relationship among the proband's direct relatives.


Asunto(s)
ADN Mitocondrial , Nacimiento Vivo , Embarazo , Humanos , Femenino , Niño , Pruebas Genéticas/métodos , Fertilización In Vitro , Mutación
20.
Genes (Basel) ; 14(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36833331

RESUMEN

This study aimed to find the molecular basis of Bardet-Biedl syndrome (BBS) in Pakistani consanguineous families. A total of 12 affected families were enrolled. Clinical investigations were performed to access the BBS-associated phenotypes. Whole exome sequencing was conducted on one affected individual from each family. The computational functional analysis predicted the variants' pathogenic effects and modeled the mutated proteins. Whole-exome sequencing revealed 9 pathogenic variants in six genes associated with BBS in 12 families. The BBS6/MKS was the most common BBS causative gene identified in five families (5/12, 41.6%), with one novel (c.1226G>A, p.Gly409Glu) and two reported variants. c.774G>A, Thr259LeuTer21 was the most frequent BBS6/MMKS allele in three families 3/5 (60%). Two variants, c.223C>T, p.Arg75Ter and a novel, c. 252delA, p.Lys85STer39 were detected in the BBS9 gene. A novel 8bp deletion c.387_394delAAATAAAA, p. Asn130GlyfsTer3 was found in BBS3 gene. Three known variants were detected in the BBS1, BBS2, and BBS7 genes. Identification of novel likely pathogenic variants in three genes reaffirms the allelic and genetic heterogeneity of BBS in Pakistani patients. The clinical differences among patients carrying the same pathogenic variant may be due to other factors influencing the phenotype, including variants in other modifier genes.


Asunto(s)
Síndrome de Bardet-Biedl , Humanos , Linaje , Síndrome de Bardet-Biedl/genética , Pakistán , Fenotipo , Alelos , Proteínas Asociadas a Microtúbulos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA