Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Exp Hematol Oncol ; 13(1): 13, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38291540

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD: OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS: We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION: These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.

2.
J Hum Kinet ; 89: 313-326, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38053959

RESUMEN

In this study, the three-person officiating (3PO) principle was employed as an innovative method to examine decision-making (DM) processes among basketball referees. We aimed at exploring whether the ranking, experience, and teamwork among 25 basketball referees could predict accuracy of DM in ambiguous situations taken from basketball games. An analysis of 283 officiating cases taken from 100 filmed games was conducted. The events were then classified by nine experts according to whether the officiating decision was accurate, and which referee (Lead, Centre or Trail) was standing in the main coverage area, as per the 3PO principle, when the decision was made. Our findings indicate that the teamwork (coordination) component was associated with the quality of DM. Of the 283 events, 60 decisions (21%) were not made from the recommended position according to the 3PO principle; 49 of those decisions were incorrect. The findings are discussed from both developmental and instructional perspectives.

3.
Oncogene ; 41(50): 5361-5372, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344676

RESUMEN

Glioma stem cells (GSCs) promote tumor progression and therapeutic resistance and exhibit remarkable bioenergetic and metabolic plasticity, a phenomenon that has been linked to their ability to escape standard and targeted therapies. However, specific mechanisms that promote therapeutic resistance have been somewhat elusive. We hypothesized that because GSCs proliferate continuously, they may require the salvage and de novo nucleotide synthesis pathways to satisfy their bioenergetic needs. Here, we demonstrate that GSCs lacking EGFR (or EGFRvIII) amplification are exquisitely sensitive to de novo pyrimidine synthesis perturbations, while GSCs that amplify EGFR are utterly resistant. Furthermore, we show that EGFRvIII promotes BAY2402234 resistance in otherwise BAY2402234 responsive GSCs. Remarkably, a novel, orally bioavailable, blood-brain-barrier penetrating, dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 was found to abrogate GSC proliferation, block cell-cycle progression, and induce DNA damage and apoptosis. When dosed daily by oral gavage, BAY2402234 significantly impaired the growth of two different intracranial human glioblastoma xenograft models in mice. Given this observed efficacy and the previously established safety profiles in preclinical animal models and human clinical trials, the clinical testing of BAY2402234 in patients with primary glioblastoma that lacks EGFR amplification is warranted.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Ratones , Animales , Dihidroorotato Deshidrogenasa , Células Madre Neoplásicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Daño del ADN , Proliferación Celular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral
4.
Cureus ; 14(9): e29407, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36304384

RESUMEN

The treatment of proximal humerus fractures is complex. Factors like fracture pattern, patient age, pre-injury activity level, soft tissue status, and comorbidities play a role in decision-making for non-operative versus operative management. Complications of non-operative vs operative management of proximal humerus fractures include but are not limited to arthrofibrosis, fracture nonunion, and avascular necrosis. We report an unusual case of a 64-year-old female presenting with a three-part proximal humerus fracture dislocation. The patient underwent primary open reduction internal fixation. Twenty-four weeks after open reduction and internal fixation, the patient experienced collapse of the humeral head with intraarticular hardware migration, and she underwent hardware removal. Fifty-two weeks after hardware removal, the patient experienced avascular necrosis of the humeral head, and she underwent salvage reverse total shoulder arthroplasty. There is debate in the current literature on the best management of multi-part proximal humerus fracture-dislocations.

5.
Mol Cancer Res ; 19(11): 1917-1928, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34348992

RESUMEN

Investigations into the function of nonpromoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated nonpromoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we examined 32 tumor types and identified 57 tumor suppressors and oncogenes out of 260 genes exhibiting a correlation of > 0.5 between gene body methylation and gene expression in at least one tumor type. The lymphocyte-specific gene CARD11 exhibits robust association between gene body methylation and expression across 19 of 32 tumor types examined. It is significantly overexpressed in kidney renal cell carcinoma (KIRC) and lung adenocarcinoma (LUAD) tumor tissues in comparison with respective control samples; and is significantly associated with lower overall survival in KIRC. Contrary to its canonical function in lymphocyte NFκB activation, CARD11 activates the mTOR pathway in KIRC and LUAD, resulting in suppressed autophagy. Furthermore, demethylation of a CpG island within the gene body of CARD11 decreases gene expression. Collectively, our study highlights how DNA methylation outside the promoter region can impact tumor progression. IMPLICATIONS: Our study describes a novel regulatory role of gene body DNA methylation-dependent CARD11 expression on mTOR signaling and its impact on tumor progression.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Metilación de ADN/genética , Linfocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Pronóstico , Transducción de Señal , Transfección
6.
Glia ; 69(9): 2199-2214, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991013

RESUMEN

High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores de Crecimiento de Fibroblastos , Glioma/patología , Humanos , Invasividad Neoplásica , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK , Microambiente Tumoral
8.
Neuro Oncol ; 23(5): 770-782, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33258947

RESUMEN

BACKGROUND: The conditional reprogramming cell culture method was developed to facilitate growth of senescence-prone normal and neoplastic epithelial cells, and involves co-culture with irradiated fibroblasts and the addition of a small molecule Rho kinase (ROCK) inhibitor. The aim of this study was to determine whether this approach would facilitate the culture of compact low-grade gliomas. METHODS: We attempted to culture 4 pilocytic astrocytomas, 2 gangliogliomas, 2 myxopapillary ependymomas, 2 anaplastic gliomas, 2 difficult-to-classify low-grade neuroepithelial tumors, a desmoplastic infantile ganglioglioma, and an anaplastic pleomorphic xanthoastrocytoma using a modified conditional reprogramming cell culture approach. RESULTS: Conditional reprogramming resulted in robust increases in growth for a majority of these tumors, with fibroblast conditioned media and ROCK inhibition both required. Switching cultures to standard serum containing media, or serum-free neurosphere conditions, with or without ROCK inhibition, resulted in decreased proliferation and induction of senescence markers. Rho kinase inhibition and conditioned media both promoted Akt and Erk1/2 activation. Several cultures, including one derived from a NF1-associated pilocytic astrocytoma (JHH-NF1-PA1) and one from a BRAF p.V600E mutant anaplastic pleomorphic xanthoastrocytoma (JHH-PXA1), exhibited growth sufficient for preclinical testing in vitro. In addition, JHH-NF1-PA1 cells survived and migrated in larval zebrafish orthotopic xenografts, while JHH-PXA1 formed orthotopic xenografts in mice histopathologically similar to the tumor from which it was derived. CONCLUSIONS: These studies highlight the potential for the conditional reprogramming cell culture method to promote the growth of glial and glioneuronal tumors in vitro, in some cases enabling the establishment of long-term culture and in vivo models.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Reprogramación Celular , Glioma , Animales , Técnicas de Cultivo de Célula , Ratones , Proteínas Proto-Oncogénicas B-raf , Pez Cebra
9.
Oncoimmunology ; 9(1): 1846915, 2020 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33344042

RESUMEN

Immune checkpoint blockade (ICB) has demonstrated an impressive outcome in patients with metastatic melanoma, yet, durable complete response; even with Ipilimumab/Nivolumab combo are under 30%. Primary and acquired resistance in response to ICB is commonly due to a tumor immune escape mechanism dictated by the tumor microenvironment (TME). Macrophage Migratory Inhibition Factor (MIF) has emerged as an immunosuppressive factor secreted in the TME. We have previously demonstrated that blockade of the MIF-CD74 signaling on macrophages and dendritic cells restored the anti-tumor immune response against melanoma. Here, we report that inhibition of the MIF-CD74 axis combined with ipilimumab could render resistant melanoma to better respond to anti-CTLA-4 treatment. We provide evidence that blocking the MIF-CD74 signaling potentiates CD8+ T-cells infiltration and drives pro-inflammatory M1 conversion of macrophages in the TME. Furthermore, MIF inhibition resulted in reprogramming the metabolic pathway by reducing lactate production, HIF-1α and PD-L1 expression in the resistant melanoma cells. Melanoma patient data extracted from the TCGA database supports the hypothesis that high MIF expression strongly correlates with poor response to ICB therapy. Our findings provide a rationale for combining anti-CTLA-4 with MIF inhibitors as a potential strategy to overcome resistance to ICB therapy in melanoma, turning a "cold" tumor into a "hot" one mediated by the activation of innate immunity and reprogramming of tumor metabolism and reduced PD-L1 expression in melanoma cells.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Oxidorreductasas Intramoleculares/uso terapéutico , Ipilimumab/uso terapéutico , Factores Inhibidores de la Migración de Macrófagos/uso terapéutico , Melanoma/tratamiento farmacológico , Microambiente Tumoral
10.
Int J Biol Sci ; 16(16): 3184-3199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162824

RESUMEN

Background: Histone deacetylase (HDAC) inhibitors have emerged as a new class of anti-tumor agents for various types of tumors, including glioblastoma. Methods and results: We found that a novel HDAC inhibitor, MPT0B291, significantly reduced the cell viability and increased cell death of human and rat glioma cell lines, but not in normal astrocytes. We also demonstrated that MPT0B291 suppressed proliferation by inducing G1 phase cell cycle arrest and increased apoptosis in human and rat glioma cell lines by flow cytometry and immunocytochemistry. We further investigated the anti-tumor effects of MPT0B291 in xenograft (mouse) and allograft (rat) models. The IVIS200 images and histological analysis indicated MPT0B291 (25 mg/kg, p. o.) reduced tumor volume. Mechanistically, MPT0B291 increased phosphorylation and acetylation/activation of p53 and increased mRNA levels of the apoptosis related genes PUMA, Bax, and Apaf1 as well as increased protein level of PUMA, Apaf1 in C6 cell line. The expression of cell cycle related gene p21 was also increased and Cdk2, Cdk4 were decreased by MPT0B291. Conclusion: Our study highlights the anti-tumor efficacy of a novel compound MPT0B291 on glioma growth.


Asunto(s)
Antineoplásicos/farmacología , Glioma/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Astrocitos , Muerte Celular , Línea Celular Tumoral , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Fosforilación , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Res ; 80(21): 4681-4692, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32928918

RESUMEN

Muscleblind-like proteins (MBNL) belong to a family of tissue-specific regulators of RNA metabolism that control premessenger RNA splicing. Inactivation of MBNL causes an adult-to-fetal alternative splicing transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (glioma stem cell, GSC) through hypoxia-induced responses. Accordingly, we hypothesize here that hypoxia-induced responses in GBM might also include MBNL-based alternative splicing to promote tumor progression. When cultured in hypoxia condition, GSCs rapidly exported muscleblind-like-1 (MBNL1) out of the nucleus, resulting in significant inhibition of MBNL1 activity. Notably, hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression, resulting in significantly prolonged survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, where hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may therefore, yield potent tumor suppressor activities, uncovering new therapeutic opportunities to counter this disease. SIGNIFICANCE: This study describes an unexpected mechanism by which RNA-binding protein, MBNL1, activity is inhibited in hypoxia by a simple isoform switch to regulate glioma stem cell self-renewal, tumorigenicity, and progression.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Neoplásicas/patología , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/fisiología , Animales , Hipoxia de la Célula/fisiología , Progresión de la Enfermedad , Xenoinjertos , Humanos , Ratones
12.
JAMA Dermatol ; 156(9): 1004-1011, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725204

RESUMEN

Importance: Use of prognostic gene expression profile (GEP) testing in cutaneous melanoma (CM) is rising despite a lack of endorsement as standard of care. Objective: To develop guidelines within the national Melanoma Prevention Working Group (MPWG) on integration of GEP testing into the management of patients with CM, including (1) review of published data using GEP tests, (2) definition of acceptable performance criteria, (3) current recommendations for use of GEP testing in clinical practice, and (4) considerations for future studies. Evidence Review: The MPWG members and other international melanoma specialists participated in 2 online surveys and then convened a summit meeting. Published data and meeting abstracts from 2015 to 2019 were reviewed. Findings: The MPWG members are optimistic about the future use of prognostic GEP testing to improve risk stratification and enhance clinical decision-making but acknowledge that current utility is limited by test performance in patients with stage I disease. Published studies of GEP testing have not evaluated results in the context of all relevant clinicopathologic factors or as predictors of regional nodal metastasis to replace sentinel lymph node biopsy (SLNB). The performance of GEP tests has generally been reported for small groups of patients representing particular tumor stages or in aggregate form, such that stage-specific performance cannot be ascertained, and without survival outcomes compared with data from the American Joint Committee on Cancer 8th edition melanoma staging system international database. There are significant challenges to performing clinical trials incorporating GEP testing with SLNB and adjuvant therapy. The MPWG members favor conducting retrospective studies that evaluate multiple GEP testing platforms on fully annotated archived samples before embarking on costly prospective studies and recommend avoiding routine use of GEP testing to direct patient management until prospective studies support their clinical utility. Conclusions and Relevance: More evidence is needed to support using GEP testing to inform recommendations regarding SLNB, intensity of follow-up or imaging surveillance, and postoperative adjuvant therapy. The MPWG recommends further research to assess the validity and clinical applicability of existing and emerging GEP tests. Decisions on performing GEP testing and patient management based on these results should only be made in the context of discussion of testing limitations with the patient or within a multidisciplinary group.


Asunto(s)
Toma de Decisiones Clínicas/métodos , Perfilación de la Expresión Génica/normas , Melanoma/diagnóstico , Guías de Práctica Clínica como Asunto , Neoplasias Cutáneas/diagnóstico , Consenso , Conferencias de Consenso como Asunto , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Estadificación de Neoplasias , Pronóstico , Biopsia del Ganglio Linfático Centinela/normas , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia
15.
Nat Commun ; 11(1): 896, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060274

RESUMEN

Predicting the outcome of immunotherapy treatment in melanoma patients is challenging. Alterations in genes involved in antigen presentation and the interferon gamma (IFNγ) pathway play an important role in the immune response to tumors. We describe here that the overexpression of PSMB8 and PSMB9, two major components of the immunoproteasome, is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients. We study the mechanism underlying this connection by analyzing the antigenic peptide repertoire of cells that overexpress these subunits using HLA peptidomics. We find a higher response of patient-matched tumor infiltrating lymphocytes against antigens diferentially presented after immunoproteasome overexpression. Importantly, we find that PSMB8 and PSMB9 expression levels are much stronger predictors of melanoma patients' immune response to checkpoint inhibitors than the tumors' mutational burden. These results suggest that PSMB8 and PSMB9 expression levels can serve as important biomarkers for stratifying melanoma patients for immune-checkpoint treatment.


Asunto(s)
Melanoma/inmunología , Melanoma/terapia , Complejo de la Endopetidasa Proteasomal/genética , Presentación de Antígeno , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Humanos , Inmunoterapia , Interferón gamma/genética , Interferón gamma/inmunología , Melanoma/diagnóstico , Melanoma/genética , Pronóstico , Complejo de la Endopetidasa Proteasomal/inmunología
16.
Neurooncol Adv ; 2(1): vdz062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32002519

RESUMEN

BACKGROUND: Necrotic foci with surrounding hypoxic cellular pseudopalisades and microvascular hyperplasia are histological features found in glioblastoma (GBM). We have previously shown that monocarboxylate transporter 4 (MCT4) is highly expressed in necrotic/hypoxic regions in GBM and that increased levels of MCT4 are associated with worse clinical outcomes. METHODS: A combined transcriptomics and metabolomics analysis was performed to study the effects of MCT4 depletion in hypoxic GBM neurospheres. Stable and inducible MCT4-depletion systems were used to evaluate the effects of and underlining mechanisms associated with MCT4 depletion in vitro and in vivo, alone and in combination with radiation. RESULTS: This study establishes that conditional depletion of MCT4 profoundly impairs self-renewal and reduces the frequency and tumorigenicity of aggressive, therapy-resistant, glioblastoma stem cells. Mechanistically, we observed that MCT4 depletion induces anaplerotic glutaminolysis and abrogates de novo pyrimidine biosynthesis. The latter results in a dramatic increase in DNA damage and apoptotic cell death, phenotypes that were readily rescued by pyrimidine nucleosides supplementation. Consequently, we found that MCT4 depletion promoted a significant prolongation of survival of animals bearing established orthotopic xenografts, an effect that was extended by adjuvant treatment with focused radiation. CONCLUSIONS: Our findings establish a novel role for MCT4 as a critical regulator of cellular deoxyribonucleotide levels and provide a new therapeutic direction related to MCT4 depletion in GBM.

17.
Gut ; 69(10): 1818-1831, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31988194

RESUMEN

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Asunto(s)
Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales , Neovascularización Patológica , ARN Largo no Codificante , Factor de Transcripción STAT3/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Terapia Genética , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pruebas de Farmacogenómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Front Psychol ; 11: 613469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510692

RESUMEN

Video assistant referee was officially introduced into soccer regulations in 2018, after many years in which referee errors were justified as being "part of the game." The technology's penetration into the soccer field was accompanied by concerns and much criticism that, to a large degree, continues to be voiced with frequency. This paper argues that, despite fierce objections and extensive criticism, VAR represents an important revision in modern professional soccer, and moreover, it completes a moral revolution in the evolution of the sport as a whole. Theoretically speaking, this technology enables an improvement in the sport's professional standards and its public image and prestige, and especially its moral standards - Fair play. Furthermore, the introduction of this technology makes it possible to discover additional weaknesses (Standardization for extra time, a clear definition of a handball offense and more) that professional soccer regulations will probably be forced to address in the future.

19.
J Sports Sci ; 38(4): 390-398, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31825286

RESUMEN

The literature on momentum is still undecided, with mixed results whether momentum exists or is only perceived to exist ("hot hand fallacy"). We explore whether momentum exists by looking at cases in which a basketball player has three consecutive free throws. A free throw is a well-defined task executed in a stable environment, allegedly giving momentum optimal chances to occur. Taking 14 NBA seasons we collected over 4500 three-free-throw sets (triplets). We obtained the outcomes of the shots as well as some additional variables about the player and the game: the player's average free-throw percentage, home or away, and the game score and the quarter when the free throws were attempted. We first analyse the hit rates in the three shots and then proceed to regression analysis that also controls for the abovementioned variables. We address several concerns raised in the literature. All comparisons and analyses yield the same conclusion that there is no evidence for momentum in the data.


Asunto(s)
Rendimiento Atlético/psicología , Rendimiento Atlético/estadística & datos numéricos , Baloncesto/psicología , Baloncesto/estadística & datos numéricos , Conducta Competitiva , Humanos , Probabilidad , Análisis de Regresión , Análisis y Desempeño de Tareas
20.
Cancer Lett ; 462: 33-42, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377205

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor with a median survival of approximately 14 months. Despite aggressive treatment of surgical resection, chemotherapy and radiation therapy, only 3-5% of GBM patients survive more than 3 years. Contributing to this poor therapeutic response, it is believed that GBM contains both intrinsic and acquired mechanisms of resistance, including resistance to radiation therapy. In order to define novel mediators of radiation resistance, we conducted a functional knockdown screen, and identified the immunoglobulin superfamily protein, PTGFRN. In GBM, PTGFRN is found to be overexpressed and to correlate with poor survival. Reducing PTGFRN expression radiosensitizes GBM cells and potently decreases the rate of cell proliferation and tumor growth. Further, PTGFRN inhibition results in significant reduction of PI3K p110ß and phosphorylated AKT, due to instability of p110ß. Additionally, PTGFRN inhibition decreases nuclear p110ß leading to decreased DNA damage sensing and DNA damage repair. Therefore overexpression of PTGFRN in glioblastoma promotes AKT-driven survival signaling and tumor growth, as well as increased DNA repair signaling. These findings suggest PTGFRN is a potential signaling hub for aggressiveness in GBM.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Proliferación Celular , Daño del ADN , Reparación del ADN , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Tolerancia a Radiación , Radiación Ionizante , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...