Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1355444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725686

RESUMEN

The aerobic hyperthermophile "Fervidibacter sacchari" catabolizes diverse polysaccharides and is the only cultivated member of the class "Fervidibacteria" within the phylum Armatimonadota. It encodes 117 putative glycoside hydrolases (GHs), including two from GH family 50 (GH50). In this study, we expressed, purified, and functionally characterized one of these GH50 enzymes, Fsa16295Glu. We show that Fsa16295Glu is a ß-1,3-endoglucanase with optimal activity on carboxymethyl curdlan (CM-curdlan) and only weak agarase activity, despite most GH50 enzymes being described as ß-agarases. The purified enzyme has a wide temperature range of 4-95°C (optimal 80°C), making it the first characterized hyperthermophilic representative of GH50. The enzyme is also active at a broad pH range of at least 5.5-11 (optimal 6.5-10). Fsa16295Glu possesses a relatively high kcat/KM of 1.82 × 107 s-1 M-1 with CM-curdlan and degrades CM-curdlan nearly completely to sugar monomers, indicating preferential hydrolysis of glucans containing ß-1,3 linkages. Finally, a phylogenetic analysis of Fsa16295Glu and all other GH50 enzymes revealed that Fsa16295Glu is distant from other characterized enzymes but phylogenetically related to enzymes from thermophilic archaea that were likely acquired horizontally from "Fervidibacteria." Given its functional and phylogenetic novelty, we propose that Fsa16295Glu represents a new enzyme subfamily, GH50_3.

2.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609367

RESUMEN

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Asunto(s)
Hemoproteínas , Synechocystis , Hemo , Zinc , Histidina , Hemoproteínas/genética , Synechocystis/genética , Carbono , Hierro
3.
Nat Microbiol ; 8(9): 1619-1633, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500801

RESUMEN

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.


Asunto(s)
Archaea , Simbiosis , Archaea/genética , Archaea/metabolismo , Simbiosis/genética , Genómica , Plásmidos , ADN/metabolismo
4.
Nat Rev Microbiol ; 21(4): 221, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36781959
5.
Nat Commun ; 13(1): 5485, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123347

RESUMEN

Metagenomics is unearthing the previously hidden world of soil viruses. Many soil viral sequences in metagenomes contain putative auxiliary metabolic genes (AMGs) that are not associated with viral replication. Here, we establish that AMGs on soil viruses actually produce functional, active proteins. We focus on AMGs that potentially encode chitosanase enzymes that metabolize chitin - a common carbon polymer. We express and functionally screen several chitosanase genes identified from environmental metagenomes. One expressed protein showing endo-chitosanase activity (V-Csn) is crystalized and structurally characterized at ultra-high resolution, thus representing the structure of a soil viral AMG product. This structure provides details about the active site, and together with structure models determined using AlphaFold, facilitates understanding of substrate specificity and enzyme mechanism. Our findings support the hypothesis that soil viruses contribute auxiliary functions to their hosts.


Asunto(s)
Suelo , Virus , Carbono , Quitina , Glicósido Hidrolasas/metabolismo , Proteínas Virales/genética , Virus/genética
6.
Cell Rep ; 39(7): 110834, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584675

RESUMEN

The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Transferasas , Zinc , Humanos , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Guanosina Trifosfato , Metales/metabolismo , Metionina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transferasas/fisiología , Zinc/metabolismo
7.
Commun Biol ; 4(1): 962, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385583

RESUMEN

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Bases de Datos como Asunto , Ciencia Ambiental/métodos , Plantas , Análisis de la Célula Individual/métodos , Tecnología/instrumentación
8.
PLoS One ; 15(11): e0241867, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33147260

RESUMEN

The past decade has been a golden age for microbiology, marked by the discovery of an unprecedented increase in the number of novel bacterial species. Yet gaining biological knowledge of those organisms has not kept pace with sequencing efforts. To unlock this genetic potential there is an urgent need for generic (i.e. non-species specific) genetic toolboxes. Recently, we developed a method, termed chassis-independent recombinase-assisted genome engineering (CRAGE), enabling the integration and expression of large complex gene clusters directly into the chromosomes of diverse bacteria. Here we expand upon this technology by incorporating CRISPR-Cas9 allowing precise genome editing across multiple bacterial species. To do that we have developed a landing pad that carries one wild-type and two mutant lox sites to allow integration of foreign DNA at two locations through Cre-lox recombinase-mediated cassette exchange (RMCE). The first RMCE event is to integrate the Cas9 and the DNA repair protein genes RecET, and the second RMCE event enables the integration of customized sgRNA and a repair template. Following this workflow, we achieved precise genome editing in four different gammaproteobacterial species. We also show that the inserted landing pad and the entire editing machinery can be removed scarlessly after editing. We report here the construction of a single landing pad transposon and demonstrate its functionality across multiple species. The modular design of the landing pad and accessory vectors allows design and assembly of genome editing platforms for other organisms in a similar way. We believe this approach will greatly expand the list of bacteria amenable to genetic manipulation and provides the means to advance our understanding of the microbial world.


Asunto(s)
Edición Génica/métodos , Integrasas/metabolismo , Photorhabdus/genética , Sistemas CRISPR-Cas , Genoma Bacteriano
9.
Synth Biol (Oxf) ; 5(1): ysaa023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34746437

RESUMEN

The rapid design and assembly of synthetic DNA constructs have become a crucial component of biological engineering projects via iterative design-build-test-learn cycles. In this perspective, we provide an overview of the workflows used to generate the thousands of constructs and libraries produced each year at the U.S. Department of Energy Joint Genome Institute. Particular attention is paid to describing pipelines, tools used, types of scientific projects enabled by the platform and challenges faced in further scaling output.

10.
BMC Genomics ; 20(Suppl 12): 1003, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888454

RESUMEN

BACKGROUND: The coordination of genomic functions is a critical and complex process across biological systems such as phenotypes or states (e.g., time, disease, organism, environmental perturbation). Understanding how the complexity of genomic function relates to these states remains a challenge. To address this, we have developed a novel computational method, ManiNetCluster, which simultaneously aligns and clusters gene networks (e.g., co-expression) to systematically reveal the links of genomic function between different conditions. Specifically, ManiNetCluster employs manifold learning to uncover and match local and non-linear structures among networks, and identifies cross-network functional links. RESULTS: We demonstrated that ManiNetCluster better aligns the orthologous genes from their developmental expression profiles across model organisms than state-of-the-art methods (p-value <2.2×10-16). This indicates the potential non-linear interactions of evolutionarily conserved genes across species in development. Furthermore, we applied ManiNetCluster to time series transcriptome data measured in the green alga Chlamydomonas reinhardtii to discover the genomic functions linking various metabolic processes between the light and dark periods of a diurnally cycling culture. We identified a number of genes putatively regulating processes across each lighting regime. CONCLUSIONS: ManiNetCluster provides a novel computational tool to uncover the genes linking various functions from different networks, providing new insight on how gene functions coordinate across different conditions. ManiNetCluster is publicly available as an R package at https://github.com/daifengwanglab/ManiNetCluster.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes/genética , Genómica/métodos , Evolución Biológica , Análisis por Conglomerados , Aprendizaje Automático , Dinámicas no Lineales , Fenotipo , Programas Informáticos , Transcriptoma/genética
11.
Methods Mol Biol ; 1755: 149-161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29671269

RESUMEN

Chlamydomonas reinhardtii, a single-celled green alga, is a powerful microbial experimental system for understanding gene function. As a consequence of a high-quality genome sequence, community-wide efforts for gene model refinement and annotation, resources for strain collections and robust molecular techniques, research with this organism has significantly expanded in the past few decades. In two companion chapters, we outline colorimetric and fluorescence-based methodologies for genetic reporter systems in Chlamydomonas, which can be used to investigate and delineate gene expression and regulatory mechanisms. Here, we describe protocols for arylsulfatase activity assays using ARS2, activity of which can be measured either quantitatively or qualitatively, and in low (individual sample) or high (96-well format) throughput.


Asunto(s)
Proteínas Algáceas/genética , Arilsulfatasas/genética , Chlamydomonas reinhardtii/genética , Pruebas de Enzimas/métodos , Genes Reporteros/genética , Arilsulfatasas/metabolismo , Secuencia de Bases , Bioensayo/instrumentación , Bioensayo/métodos , Colorimetría/instrumentación , Colorimetría/métodos , Electroporación/instrumentación , Electroporación/métodos , Pruebas de Enzimas/instrumentación , Escherichia coli , Regulación de la Expresión Génica , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Transformación Bacteriana
12.
Sci Rep ; 6: 21471, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26975219

RESUMEN

Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Validación de Programas de Computación , Inteligencia Artificial , Línea Celular Tumoral/clasificación , Línea Celular Tumoral/patología , Chlamydomonas reinhardtii/clasificación , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Humanos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte , Linfocitos T/clasificación , Linfocitos T/citología
13.
Archaea ; 2016: 7316725, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28053595

RESUMEN

Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , Haloferax volcanii/metabolismo , Lisina/análogos & derivados , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Cromatografía Liquida , Lisina/metabolismo , Espectrometría de Masas en Tándem
14.
Plant Biotechnol J ; 14(1): 22-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25641364

RESUMEN

Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.


Asunto(s)
Biocombustibles , Chlamydomonas reinhardtii/enzimología , Electricidad , NADPH Oxidasas/metabolismo , Chlamydomonas reinhardtii/efectos de la radiación , Espacio Extracelular/metabolismo , Prueba de Complementación Genética , Luz , NADPH Oxidasas/química , Proteínas de Plantas/metabolismo , Superóxidos/metabolismo
15.
Plant Cell ; 27(10): 2743-69, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26432862

RESUMEN

The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes.


Asunto(s)
Chlamydomonas reinhardtii/genética , Transcriptoma , Cuerpos Basales/metabolismo , Ciclo Celular , Diferenciación Celular , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Ritmo Circadiano , Flagelos/metabolismo , Regulación de la Expresión Génica , Redes y Vías Metabólicas , Fotosíntesis
16.
Plant J ; 84(5): 974-988, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26473430

RESUMEN

Reactive oxygen species (ROS) are produced by and have the potential to be damaging to all aerobic organisms. In photosynthetic organisms, they are an unavoidable byproduct of electron transfer in both the chloroplast and mitochondrion. Here, we employ the reference unicellular green alga Chlamydomonas reinhardtii to identify the effect of H2O2 on gene expression by monitoring the changes in the transcriptome in a time-course experiment. Comparison of transcriptomes from cells sampled immediately prior to the addition of H2O2 and 0.5 and 1 h subsequently revealed 1278 differentially abundant transcripts. Of those transcripts that increase in abundance, many encode proteins involved in ROS detoxification, protein degradation and stress responses, whereas among those that decrease are transcripts encoding proteins involved in photosynthesis and central carbon metabolism. In addition to these transcriptomic adjustments, we observe that addition of H2O2 is followed by an accumulation and oxidation of the total intracellular glutathione pool, and a decrease in photosynthetic O2 output. Additionally, we analyze our transcriptomes in the context of changes in transcript abundance in response to singlet O2 (O2*), and relate our H2O2 -induced transcripts to a diurnal transcriptome, where we demonstrate enrichments of H2O2 -induced transcripts early in the light phase, late in the light phase and 2 h prior to light. On this basis several genes that are highlighted in this work may be involved in previously undiscovered stress remediation pathways or acclimation responses.


Asunto(s)
Chlamydomonas reinhardtii/genética , Genoma de Planta , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/genética , Carbono/metabolismo , Ciclo Celular/genética , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Oxidación-Reducción , Fotosíntesis/genética , Especies Reactivas de Oxígeno/metabolismo
17.
Eukaryot Cell ; 14(9): 964-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26163317

RESUMEN

Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.


Asunto(s)
Autofagia , Chlamydomonas reinhardtii/metabolismo , Metales Pesados/toxicidad , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/genética , Metales Pesados/farmacología , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
18.
Trends Plant Sci ; 19(10): 672-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24950814

RESUMEN

The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Genómica , Empalme Alternativo , Sitios Genéticos , Modelos Genéticos , Fotosíntesis/genética , Análisis de Secuencia de ARN , Transcriptoma
19.
Plant Cell ; 26(4): 1410-1435, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24748044

RESUMEN

Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency.

20.
Plant Cell ; 25(11): 4305-23, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24280389

RESUMEN

To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation-induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10(2)) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.


Asunto(s)
Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Enzimas/metabolismo , Nitrógeno/metabolismo , Acetatos/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/genética , Pared Celular/metabolismo , Enzimas/genética , Genoma de Planta , Datos de Secuencia Molecular , Mutación , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Almidón/genética , Almidón/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...