Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(6): 3548-3567, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712543

RESUMEN

The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.


Asunto(s)
Dispositivos Laboratorio en un Chip , Neovascularización Fisiológica , Ingeniería de Tejidos , Humanos , Neovascularización Fisiológica/fisiología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Neovascularización Patológica/patología , Neovascularización Patológica/fisiopatología , Angiogénesis
2.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634810

RESUMEN

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Asunto(s)
Técnicas de Cocultivo , Factor 2 de Crecimiento de Fibroblastos , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Ingeniería de Tejidos , Humanos , Tejido Adiposo/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Gelatina/química , Gelatina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metacrilatos/química , Metacrilatos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Ingeniería de Tejidos/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
3.
ACS Appl Bio Mater ; 7(1): 406-415, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148527

RESUMEN

The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.


Asunto(s)
Gelatina , Metacrilatos , Humanos , Animales , Ratones , Células Endoteliales de la Vena Umbilical Humana , Gelatina/farmacología , Gelatina/química , Tejido Adiposo , Hidrogeles/química
4.
J Mech Behav Biomed Mater ; 147: 106159, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797555

RESUMEN

Bioactive glass (BG) has been widely employed in the field of bone tissue engineering owing to its osteoconductive properties. These properties increase the stiffness and bioactivity of polymeric hydrogels, making them ideal for the repair, replacement, and regeneration of damaged bones. In this study, we investigated the effects of incorporating silanized 45S5 bioactive glass (Si-BG) into gelatin methacrylate (GelMA) hydrogel (GelMA/Si-BG) for potential bone tissue engineering. Our findings revealed that crosslinking GelMA with Si-BG had a striking increase in bioactivity with and without osteogenic induction of human mesenchymal stem cells (hMSCs) when compared to GelMA/BG hydrogels. Meanwhile, both GelMA/Si-BG and GelMA/BG hydrogels were able to maintain the cell viability of hMSC for up to 14 days. Additionally, GelMA/Si-BG hydrogels were shown to have a significantly higher compressive modulus than GelMA/BG hydrogels. This study has demonstrated the introduction of silanized 45S5 BG into GelMA hydrogel bioactivity and mechanical properties of GelMA hydrogels, exemplifying the potential application of silanization of BG in bone tissue engineering.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Humanos , Hidrogeles/farmacología , Metacrilatos/farmacología , Huesos , Andamios del Tejido
5.
Tissue Eng Part B Rev ; 29(6): 710-722, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37335218

RESUMEN

Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Polímeros , Impresión Tridimensional , Andamios del Tejido , Materiales Biocompatibles
6.
Nanomedicine (Lond) ; 18(9): 743-754, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37306216

RESUMEN

Background: Boron neutron capture therapy (BNCT) is a promising cancer treatment that eliminates tumor cells by triggering high-energy radiation within cancer cells. Aim: In vivo evaluation of poly(vinyl alcohol)/boric acid crosslinked nanoparticles (PVA/BA NPs) for BNCT. Materials & methods: PVA/BA NPs were synthesized and intravenously injected into tumor-bearing mice for BNCT. Results: The in vitro boron uptake of PVA/BA NPs in tumor cells was 70-fold higher than the required boron uptake for successful BNCT. In an in vivo study, PVA/BA NPs showed a 44.29% reduction in tumor size compared with clinically used boronophenylalanine for oral cancer in a murine model. Conclusion: PVA/BA NPs exhibited effective therapeutic results for oral cancer treatments in BNCT.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias de la Boca , Nanopartículas , Animales , Ratones , Terapia por Captura de Neutrón de Boro/métodos , Neoplasias de la Boca/radioterapia , Modelos Animales de Enfermedad , Ingeniería Química , Masculino
7.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215284

RESUMEN

To recreate or substitute tissue in vivo is a complicated endeavor that requires biomaterials that can mimic the natural tissue environment. Gelatin methacrylate (GelMA) is created through covalent bonding of naturally derived polymer gelatin and methacrylic groups. Due to its biocompatibility, GelMA receives a lot of attention in the tissue engineering research field. Additionally, GelMA has versatile physical properties that allow a broad range of modifications to enhance the interaction between the material and the cells. In this review, we look at recent modifications of GelMA with naturally derived polymers, nanomaterials, and growth factors, focusing on recent developments for vascular tissue engineering and wound healing applications. Compared to polymers and nanoparticles, the modifications that embed growth factors show better mechanical properties and better cell migration, stimulating vascular development and a structure comparable to the natural-extracellular matrix.

8.
Nanomedicine (Lond) ; 16(6): 441-452, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599549

RESUMEN

Background: Due to the noninvasive nature of boron neutron capture therapy (BNCT), it is considered a promising cancer treatment method. Aim: To investigate whether polyvinyl alcohol/boric acid crosslinked nanoparticles (PVA/BA NPs) are an efficient delivery system for BNCT. Materials & methods: PVA/BA NPs were synthesized and cocultured with brain and oral cancers cells for BNCT. Results: PVA/BA NPs had a boron-loading capacity of 7.83 ± 1.75 w/w%. They accumulated in brain and oral cancers cells at least threefold more than in fibroblasts and macrophages. The IC50 values of the brain and oral cancers cells were at least ninefold and sixfold lower than those of fibroblasts and macrophages, respectively. Conclusion: Theoretically, PVA/BA NPs target brain and oral cancers cells and could offer improved therapeutic outcomes of BNCT.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Nanopartículas , Ácidos Bóricos , Boro , Compuestos de Boro , Alcohol Polivinílico , Polivinilos
9.
Biofabrication ; 12(2): 025016, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31974317

RESUMEN

Microwell arrays have emerged as three-dimensional substrates for cell culture due to their simplicity of fabrication and promise for high-throughput applications such as 3D cell-based assays for drug screening. To date, most microwells have had cylindrical geometries. Motivated by our previous findings that cells display 3D physiological characteristics when grown in the spherical micropores of monodisperse foam scaffolds (Lee et al 2013 Integr. Biol. 5 1447-55 and Lin et al 2011 Soft Matter 7 10010-6), here we engineered novel microwells shaped as spherical caps with obtuse polar angles, yielding narrow apertures. When used as bare substrates, these microwells were suitable for culturing cell spheroids; the narrow apertures sterically hindered unattached cultured cells from rolling out of microwells under agitation. When only the walls of the microwell were conjugated with extracellular matrix proteins, cells remained confined in the microwells. Epithelial cells proliferated and burst out of the aperture, and cell polarity was oriented based on the distribution of extracellular matrix proteins in the microwells. Surprisingly, single fibroblast cells in spherical wells of various diameters (40-100 µm) underwent cell-cycle arrest, while cells in circular cylindrical microwells continued to proliferate. Spatial confinement was not sufficient to cause cell-cycle arrest; however, confinement in a constant negative-curvature microenvironment led to cell-cycle arrest. Overall, these investigations demonstrate that this spherical microwell substrate constitutes a novel basic research tool for elucidating how cells respond to dimensionality and microenvironment with radii of curvature at the cellular length scale.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Resinas Acrílicas/química , Animales , Técnicas de Cultivo de Célula/instrumentación , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Microambiente Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratas , Receptores de Superficie Celular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA