Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39087727

RESUMEN

PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm2), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.

2.
Microsc Res Tech ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031027

RESUMEN

This study employed multifractal analysis to investigate the changes in surface morphology of SiO2 anti-reflective coatings prepared on KDP substrates using the sol-gel method, under various conditions of ultraviolet (UV) irradiance. The coatings were successfully fabricated, and the chemical structure of the SiO2 sol was comprehensively characterized using Solid-State Nuclear Magnetic Resonance (SSNMR) technology. Under low UV irradiance (4 J/cm2), repeated experiments revealed a crack-induced mechanism of surface fatigue damage. Utilizing Scanning Electron Microscopy (SEM), the study discovered the induction effect of initial crack defects in UV-damaged coatings and established a damage model. Furthermore, Atomic Force Microscopy (AFM) was used to acquire images of the coatings' surface morphology at different damage levels, which were analyzed using the multifractal spectrum f(α). This analysis confirmed the multifractal nature of the coatings both before and after damage. This study identified significant effects of UV irradiation on the width of the multifractal spectrum and Δf, indicating that the SiO2 anti-reflective coatings exhibit multifractal characteristics under various damage states. The coatings displayed a pattern of decreasing and then increasing singularity spectrum width, height distribution unevenness, and surface roughness with increasing damage. This study demonstrates that multifractal analysis is an effective tool for describing the complexity of the surface morphology of sol-gel-derived anti-reflective coatings for the first time and for validating their multifractal properties across different stages of UV damage. HIGHLIGHTS: Damage dynamic process of KDP crystal sol-gel coating was described by SEM&AFM; The crack propagation mechanism of sol-gel coating under UV radiation is proposed; The damage evolution of sol-gel coating was described by multifractal analysis.

3.
Nanomaterials (Basel) ; 14(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057899

RESUMEN

The wide utilization of lithium-ion batteries (LIBs) prompts extensive research on the anode materials with large capacity and excellent stability. Despite the attractive electrochemical properties of pure Si anodes outperforming other Si-based materials, its unsafety caused by huge volumetric expansion is commonly admitted. Silicon monoxide (SiO) anode is advantageous in mild volume fluctuation, and would be a proper alternative if the low initial columbic efficiency and conductivity can be ameliorated. Herein, a hybrid structure composed of active material SiO particles and carbon nanofibers (SiO/CNFs) is proposed as a solution. CNFs, through electrospun processes, serve as a conductive skeleton for SiO nanoparticles and enable SiO nanoparticles to be uniformly embedded in. As a result, the SiO/CNF electrochemical performance reaches a peak at 20% the mass ratio of SiO, where the retention rate reaches 73.9% after 400 cycles at a current density of 100 mA g-1, and the discharge capacity after stabilization and 100 cycles are 1.47 and 1.84 times higher than that of pure SiO, respectively. A fast lithium-ion transport rate during cycling is also demonstrated as the corresponding diffusion coefficient of the SiO/CNF reaches ~8 × 10-15 cm2 s-1. This SiO/CNF hybrid structure provides a flexible and cost-effective solution for LIBs and sheds light on alternative anode choices for industrial battery assembly.

4.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252800

RESUMEN

In x-ray imaging, the size of the x-ray tube light source significantly impacts image quality. However, existing methods for characterizing the size of the x-ray tube light source do not meet measurement requirements due to limitations in processing accuracy and mechanical precision. In this study, we introduce a novel method for accurately characterizing the size of the x-ray tube light source using spherical encoded imaging technology. This method effectively mitigates blurring caused by system tilting, making system alignment and assembly more manageable. We employ the Richardson-Lucy algorithm to iteratively deconvolve the image and recover spatial information about the x-ray tube source. Unlike traditional coded imaging methods, spherical coded imaging employs high-Z material spheres as coding elements, replacing the coded holes used in traditional approaches. This innovation effectively mitigates blurring caused by system tilting, making system alignment and assembly more manageable. In addition, the mean square error is reduced to 0.008. Our results demonstrate that spherical encoded imaging technology accurately characterizes the size of the x-ray tube light source. This method holds significant promise for enhancing image quality in x-ray imaging.

5.
Opt Express ; 31(19): 30486-30494, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710589

RESUMEN

Traditional spiral zone plates (SZPs) have been widely used to generate optical vortices, but this structure suffers from multiple focuses. To eliminate high-order foci, the current method is to design a binary structure that has a sinusoidal transmittance function along the radial direction. With the rapid development of artificial neural networks, they can provide alternative methods to design novel SZPs with a single focus. In this paper, we first propose the concept of generalized binary spiral zone plates (GBSZPs), and train a feedforward neural network (FNN) to obtain the mapping relationship between the relative intensity of each focus and the structural parameters of GBSZPs. Then the structural parameters of GBSZPs with a single focus were predicted by the trained FNN. It is found by simulations and experiments that the intensities of high-order foci can be as low as 0.2% of the required first order. By analyzing the radial transmittance function, it is found that this structure has a different distribution function from the previous radial sinusoidal function, which reveals that the imperfect radial sinusoidal form also can guide the design of binary zone plates to eliminate high-order foci diffraction. These findings are expected to direct new avenue towards improving the performance of optical image processing and quantum computation.

6.
Opt Express ; 31(12): 19266-19277, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381345

RESUMEN

The axiparabola is a novel reflective element proposed in recent years, which can generate a long focal line with high peak intensity, and has important applications in laser plasma accelerators. The off-axis design of an axiparabola has the advantage of separating the focus from incident rays. However, an off-axis axiparabola designed by the current method always produces a curved focal line. In this paper, we propose a new method to design its surface by combining geometric optics design and diffraction optics correction, which can effectively convert a curved focal line into a straight foal line. We reveal that the geometric optics design inevitably introduces an inclined wavefront, which leads to the bending of the focal line. To compensate for the tilt wavefront, we use an annealing algorithm to further correct the surface through diffraction integral operation. We also carry out numerical simulation verification based on scalar diffraction theory, which proves that the surface of this off-axis mirror designed by this method can always obtain a straight focal line. This new method has wide applicability in an axiparabola with any off-axis angle.

7.
Phys Rev Lett ; 130(9): 095101, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930918

RESUMEN

We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.

8.
Adv Sci (Weinh) ; 10(3): e2205342, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36453563

RESUMEN

Organic-inorganic perovskite solar cells (PSCs) have achieved great attention due to their expressive power conversion efficiency (PCE) up to 25.7%. To improve the photovoltaic performance of PSCs, interface engineering between the perovskite and hole transport layer (HTL) is a widely used strategy. Following this concept, benzyl trimethyl ammonium chlorides (BTACls) are used to modify the wet chemical processed perovskite film in this work. The BTACl-induced low dimensional perovskite is found to have a bilayer structure, which efficiently decreases the trap density and improves the energy level alignment at the perovskite/HTL interface. As a result, the BTACl-modified PSCs show an improved PCE compared to the control devices. From device modeling, the reduced charge carrier recombination and promoted charge carrier transfer at the perovskite/HTL interface are the cause of the open-circuit (Voc ) and fill factor (FF) improvement, respectively. This study gives a deep understanding for surface modification of perovskite films from a perspective of the morphology and the function of enhancing photovoltaic performance.

9.
Appl Radiat Isot ; 189: 110424, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36084507

RESUMEN

Aiming to improve the spatial resolution of a neutron imaging system (NIS) for 14 MeV fusion neutrons, an ideal micron resolution capillary detector filled with a high optical index liquid scintillator was simulated. A threshold for each capillary pixel and a threshold for each cluster were applied to suppress the gamma-induced background. In addition, by using a pattern recognition algorithm and an optimized Hough transform, the accuracy of determining the neutron impinging positions and the dynamic range of this detector were enhanced. For an ideal capillary array detector, the spatial resolution is expected as one capillary size of 20µm. The dynamic range of ∼1000 is reachable while the accuracy of neutron impinging position determination keeps better than 85%. The ionization quenching, light sharing and energy resolution of the detector were applied to the simulated data to understand the capillary array detector.

10.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145979

RESUMEN

All-polymer solar cells (all-PSCs) are organic solar cells in which both the electron donor and the acceptor are polymers and are considered more promising in large-scale production. Thanks to the polymerizing small molecule acceptor strategy, the power conversion efficiency of all-PSCs has ushered in a leap in recent years. However, due to the electrical properties of polymerized small-molecule acceptors (PSMAs), the FF of the devices is generally not high. The typical electron transport material widely used in these devices is PNDIT-F3N, and it is a common strategy to improve the device fill factor (FF) through interface engineering. This work improves the efficiency of all-polymer solar cells through interfacial layer engineering. Using PDINN as the electron transport layer, we boost the FF of the devices from 69.21% to 72.05% and the power conversion efficiency (PCE) from 15.47% to 16.41%. This is the highest efficiency for a PY-IT-based binary all-polymer solar cell. This improvement is demonstrated in different all-polymer material systems.

11.
Nat Commun ; 11(1): 5157, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057005

RESUMEN

Intense particle beams generated from the interaction of ultrahigh intensity lasers with sample foils provide options in radiography, high-yield neutron sources, high-energy-density-matter generation, and ion fast ignition. An accurate understanding of beam transportation behavior in dense matter is crucial for all these applications. Here we report the experimental evidence on one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter, in comparison with the current-widely used models describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations, we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m that can be created by the beam-driven return current. This collective effect plays the dominant role in the stopping of laser-accelerated intense proton beams in dense ionized matter. This finding is essential for the optimum design of ion driven fast ignition and inertial confinement fusion.

12.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 1008-1013, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543603

RESUMEN

We propose and theoretically analyze a single-order diffractive optical element, termed binary sinusoidal multilayer grating (BSMG), to effectively suppress high-order diffractions while retaining high diffraction efficiency in the first order. The key idea is to integrate sinusoidal-shaped microstructures with high-reflectivity multilayer coatings. The dependence of the high-order diffraction property on the microstructure shape and multilayer coatings is investigated. Theoretical calculation reveals that the second-, third-, fourth-, and fifth-order diffraction efficiencies are as low as 0.01%. Strikingly, we show that first-order relative diffraction efficiency (the ratio between the intensity of the first diffraction order versus that of the reflected light) as high as 97.7% can be achieved. Thus, the proposed BSMG should be highly advantageous in future development and application of tender x-ray spectroscopy.

13.
Light Sci Appl ; 9: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194954

RESUMEN

Topological physics mainly arises as a necessary link between properties of the bulk and the appearance of surface states, and has led to successful discoveries of novel topological surface states in Chern insulators, topological insulators, and topological Fermi arcs in Weyl, Dirac, and Nodal line semimetals owing to their nontrivial bulk topology. In particular, topological phases in non-Hermitian systems have attracted growing interests in recent years. In this work, we predict the emergence of the topologically stable nodal disks where the real part of the eigen frequency is degenerate between two bands in non-ideal magnetohydrodynamics plasma with collision and viscosity dissipations. Each nodal disk possesses continuously distributed topological surface charge density that integrates to unity. It is found that the lossy Fermi arcs at the interface connect to the middle of the projection of the nodal disks. We further show that the emergence, coalescence, and annihilation of the nodal disks can be controlled by plasma parameters and dissipation terms. Our findings contribute to understanding of the linear theory of bulk and surface wave dispersions of non-ideal warm magnetic plasmas from the perspective of topological physics.

14.
Appl Opt ; 58(31): 8680-8686, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873348

RESUMEN

We extend the concept of fractal spiral zone plates and define a new family of Cantor sequence spiral zone plates (CSSZPs) by removing the interference of high-order harmonics. In this typical design, apart from combining the spiral zone plates and Cantor fractal structure together, the desired physical properties have been realized by using a two-parameter modified sinusoidal apodization window along the azimuthal direction to eliminate the high-order harmonics. Numerical simulation reveals that the intensity of high diffraction orders of the CSSZPs can be effectively suppressed by at least 3 orders of magnitude, while the shapes of the sequences of focused optical vortices surrounding the first primary focal length are maintained, similar to those of the fractal spiral zone plates. The demonstration experiment, based on a spatial light modulator, has been also carried out to confirm the desired characteristics. This new kind of diffractive elements may offer potential alternatives for 3D optical tweezers, optical imaging, and lithography.

15.
J Opt Soc Am A Opt Image Sci Vis ; 36(5): 893-897, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045018

RESUMEN

We propose a technique for generating a sequence of co-axial zero axial irradiance with a so-called dual-type fractal spiral zone plate (DTFSZP). Based on the Fresnel diffraction theory, we simulated the focusing performance of this optical device. The results reveal that DTFSZP has the remarkable ability of generating a sequence of optical vortices with larger depth of focus and high lateral resolution. The central diffracted image rotates in the vicinity of the focal plane. Moreover, the focusing performance follows a modulo-4 transmutation rule. Such optics promises a complementary and versatile high-resolution non-destructive tool for particle manipulation and provides potential application in three-dimensional optical alignment systems.

16.
Rev Sci Instrum ; 90(3): 033504, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927823

RESUMEN

The injecting time of the picosecond laser in an indirect-drive integrated fast ignition experiment was measured by using an x-ray streak camera. Despite overlapping spatially and temporally in experiments, the soft x-ray signal from the nanosecond laser ablating the inner wall of an Au hohlraum and the hard x-ray signal from the bremsstrahlung radiation of hot electrons generated by a picosecond laser were separated by different image processes by filtering and collimating the two signals differently. The time sequence between the two x-ray signals was analyzed to extract the injection time of the picosecond laser relative to the hohlraum emission. By tracking the neutron yield as a function of the injection time of the picosecond laser, a clear positive correlation between the neutron yield enhancement and the derived injection times was exhibited. The heating effect of the picosecond laser was confirmed. It is concluded that this method could be used to measure the injecting time and validate the picosecond laser injection.

17.
Rev Sci Instrum ; 89(11): 115106, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501278

RESUMEN

The dynamic fragmentation of shock-loaded high-Z metal is of considerable importance for both basic and applied science. The areal density and mass-velocity distribution of dynamic fragmentation are crucial factors in understanding this issue. Experimental methods, such as pulsed X-ray radiography and proton radiography, have been utilized to obtain information on such factors; however, they are restricted to a complex device, and the spatial resolution is in the order of 100 µm. In this work, we present the high-quality radiography of the dynamic fragmentation of laser shock-loaded tin, with good two-dimensional (2D) spatial resolution. Dynamic fragmentation is generated via high-intensity ns-laser shock-loaded tin. A high-energy X-ray source in the 50-200 keV range is realized by the interaction of a high-intensity ps-pulse with an Au microwire target, attached to a low-Z substrate material. A high 2D resolution of 12 µm is achieved by point-projection radiography. The dynamic-fragmentation radiography is clear, and the signal-to-noise ratio is sufficiently high for a single-shot experiment. This unique technique has potential application in high-energy density experiments.

18.
Rev Sci Instrum ; 89(9): 093110, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278711

RESUMEN

Higher diffraction orders of a grating introduce so-called harmonics contamination that leads to ambiguity in the spectral data. They are also present in "monochromatic" output beams processed by grating monochromators at synchrotron radiation facilities, making calibration results of optical elements and detectors imprecise. The paper describes a new design of a reflective quasi-random square nano-pillar array grating to reduce the amount of data of the grating relief pattern that is 10 cm in size and suppresses higher diffraction orders in the extreme ultraviolet range. In addition, a laboratory-scale grating monochromator equipped with the grating has been developed to test its spectroscopy characteristics at grazing incidence. The results illustrate that it can suppress higher diffraction orders and maintain the spectral resolving power as an ordinary grating at grazing incidence. The grating has great potential in harmonics suppression in the field of synchrotron radiation, spectral diagnostics of plasma, and astrophysics.

19.
J Opt Soc Am A Opt Image Sci Vis ; 35(5): 726-731, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726488

RESUMEN

We present diffractive optical elements with an extended depth of focus, namely, fractal spiral zone plates (FSZPs), which combine a fractal structure and spiral zone plates (SZPs) to generate a sequence of coaxial vortices in the focal volume along the propagation direction. The axial irradiance of the FSZPs is examined both experimentally and in a simulation and is compared with that of SZPs and that of fractal zone plates. The focusing properties of the FSZPs with different parameters are investigated, and a potential application to edge-enhancement images is also shown.

20.
Appl Opt ; 57(14): 3802-3807, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29791346

RESUMEN

Axial line-focused spiral zone plates were developed for operation at optical wavelengths. The design, fabrication, and diffraction properties of the proposed element are presented. Numerical results showed that hollow beams could be generated, and that the element can be employed for a multi-wavelength operation. The hollow beam within the focal depth was demonstrated experimentally, using a charge-coupled device camera and sliding guide. The results were consistent with those obtained by the simulations. The proposed optical device exhibits significant potential for various applications including optical manipulation and lithography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA