Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 3608, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190457

RESUMEN

Platelet αIIbß3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet ß3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbß3 integrin, and the direct apoA-IV-αIIbß3 interaction can be detected using a single-molecule Biomembrane Force Probe. We identify that aspartic acids 5 and 13 at the N-terminus of apoA-IV are required for binding to αIIbß3 integrin, which is additionally modulated by apoA-IV C-terminus via intra-molecular interactions. ApoA-IV inhibits platelet aggregation and postprandial platelet hyperactivity. Human apoA-IV plasma levels show a circadian rhythm that negatively correlates with platelet aggregation and cardiovascular events. Thus, we identify apoA-IV as a novel ligand of αIIbß3 integrin and an endogenous inhibitor of thrombosis, establishing a link between lipoprotein metabolism and cardiovascular diseases.


Asunto(s)
Apolipoproteínas A/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/metabolismo , Adulto , Animales , Apolipoproteínas A/genética , Apolipoproteínas A/farmacología , Ácido Aspártico/metabolismo , Sitios de Unión , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Periodo Posprandial , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Trombosis/tratamiento farmacológico
2.
Blood ; 132(6): 622-634, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29794068

RESUMEN

Thrombopoietin (TPO), a hematopoietic growth factor produced predominantly by the liver, is essential for thrombopoiesis. Prevailing theory posits that circulating TPO levels are maintained through its clearance by platelets and megakaryocytes via surface c-Mpl receptor internalization. Interestingly, we found a two- to threefold decrease in circulating TPO in GPIbα-/- mice compared with wild-type (WT) controls, which was consistent in GPIbα-deficient human Bernard-Soulier syndrome (BSS) patients. We showed that lower TPO levels in GPIbα-deficient conditions were not due to increased TPO clearance by GPIbα-/- platelets but rather to decreased hepatic TPO mRNA transcription and production. We found that WT, but not GPIbα-/-, platelet transfusions rescued hepatic TPO mRNA and circulating TPO levels in GPIbα-/- mice. In vitro hepatocyte cocultures with platelets or GPIbα-coupled beads further confirm the disruption of platelet-mediated hepatic TPO generation in the absence of GPIbα. Treatment of GPIbα-/- platelets with neuraminidase caused significant desialylation; however, strikingly, desialylated GPIbα-/- platelets could not rescue impaired hepatic TPO production in vivo or in vitro, suggesting that GPIbα, independent of platelet desialylation, is a prerequisite for hepatic TPO generation. Additionally, impaired hepatic TPO production was recapitulated in interleukin-4/GPIbα-transgenic mice, as well as with antibodies targeting the extracellular portion of GPIbα, demonstrating that the N terminus of GPIbα is required for platelet-mediated hepatic TPO generation. These findings reveal a novel nonredundant regulatory role for platelets in hepatic TPO homeostasis, which improves our understanding of constitutive TPO regulation and has important implications in diseases related to GPIbα, such as BSS and auto- and alloimmune-mediated thrombocytopenias.


Asunto(s)
Síndrome de Bernard-Soulier/sangre , Plaquetas/fisiología , Hígado/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Trombopoyetina/biosíntesis , Animales , Síndrome de Bernard-Soulier/genética , Células Cultivadas , Glicosilación , Hepatocitos/metabolismo , Homeostasis , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ácido N-Acetilneuramínico/metabolismo , Transfusión de Plaquetas , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Trombopoyetina/sangre
3.
Blood ; 129(13): 1840-1854, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28122739

RESUMEN

Integrins are a large family of heterodimeric transmembrane receptors differentially expressed on almost all metazoan cells. Integrin ß subunits contain a highly conserved plexin-semaphorin-integrin (PSI) domain. The CXXC motif, the active site of the protein-disulfide-isomerase (PDI) family, is expressed twice in this domain of all integrins across species. However, the role of the PSI domain in integrins and whether it contains thiol-isomerase activity have not been explored. Here, recombinant PSI domains of murine ß3, and human ß1 and ß2 integrins were generated and their PDI-like activity was demonstrated by refolding of reduced/denatured RNase. We identified that both CXXC motifs of ß3 integrin PSI domain are required to maintain its optimal PDI-like activity. Cysteine substitutions (C13A and C26A) of the CXXC motifs also significantly decreased the PDI-like activity of full-length human recombinant ß3 subunit. We further developed mouse anti-mouse ß3 PSI domain monoclonal antibodies (mAbs) that cross-react with human and other species. These mAbs inhibited αIIbß3 PDI-like activity and its fibrinogen binding. Using single-molecular Biomembrane-Force-Probe assays, we demonstrated that inhibition of αIIbß3 endogenous PDI-like activity reduced αIIbß3-fibrinogen interaction, and these anti-PSI mAbs inhibited fibrinogen binding via different levels of both PDI-like activity-dependent and -independent mechanisms. Importantly, these mAbs inhibited murine/human platelet aggregation in vitro and ex vivo, and murine thrombus formation in vivo, without significantly affecting bleeding time or platelet count. Thus, the PSI domain is a potential regulator of integrin activation and a novel target for antithrombotic therapies. These findings may have broad implications for all integrin functions, and cell-cell and cell-matrix interactions.


Asunto(s)
Cadenas beta de Integrinas/inmunología , Proteína Disulfuro Isomerasas/inmunología , Secuencias de Aminoácidos , Animales , Anticuerpos Monoclonales/farmacología , Dominio Catalítico , Moléculas de Adhesión Celular , Humanos , Ratones , Proteínas del Tejido Nervioso , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Proteínas Recombinantes , Semaforinas , Trombosis/prevención & control
4.
Thromb J ; 14(Suppl 1): 29, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766055

RESUMEN

Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, ß3 integrins (αIIb subunit and PSI domain of ß3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.

5.
Crit Rev Clin Lab Sci ; 53(6): 409-30, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27282765

RESUMEN

Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.


Asunto(s)
Plaquetas , Hemostasis , Metástasis de la Neoplasia , Trombosis , Humanos , Inflamación , Trombocitopenia
6.
Redox Biol ; 6: 640-647, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26569550

RESUMEN

BACKGROUND: Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Thrombin, a potent platelet activator, can signal through GPIbα and protease-activated receptor (PAR) 1 and PAR4 on human platelets, and recently has been implicated in the generation of ROS. While ROS are known to have key roles in intra-platelet signalling and subsequent platelet activation, the precise receptors and signalling pathways involved in thrombin-induced ROS generation have yet to be fully elucidated. OBJECTIVE: To investigate the relative contribution of platelet GPIbα and PARs to thrombin-induced reactive oxygen species (ROS) generation. METHODS AND RESULTS: Highly specific antagonists targeting PAR1 and PAR4, and the GPIbα-cleaving enzyme, Naja kaouthia (Nk) protease, were used in quantitative flow cytometry assays of thrombin-induced ROS production. Antagonists of PAR4 but not PAR1, inhibited thrombin-derived ROS generation. Removal of the GPIbα ligand binding region attenuated PAR4-induced and completely inhibited thrombin-induced ROS formation. Similarly, PAR4 deficiency in mice abolished thrombin-induced ROS generation. Additionally, GPIbα and PAR4-dependent ROS formation were shown to be mediated through focal adhesion kinase (FAK) and NADPH oxidase 1 (NOX1) proteins. CONCLUSIONS: Both GPIbα and PAR4 are required for thrombin-induced ROS formation, suggesting a novel functional cooperation between GPIbα and PAR4. Our study identifies a novel role for PAR4 in mediating thrombin-induced ROS production that was not shared by PAR1. This suggests an independent signalling pathway in platelet activation that may be targeted therapeutically.


Asunto(s)
Plaquetas/enzimología , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Trombina/fisiología , Trombina/fisiología , Animales , Células COS , Chlorocebus aethiops , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Ratones , NADPH Oxidasa 1 , NADPH Oxidasas/metabolismo , Receptor PAR-1/metabolismo
7.
J Biomed Res ; 292015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26541706

RESUMEN

Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet generation, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 decades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserinerich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-independent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflammation and atherosclerosis and the potential strategies to control atherothrombosis.

9.
Nat Commun ; 6: 7737, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26185093

RESUMEN

Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc-FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell-Morell receptors, which is fundamentally different from the classical Fc-FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Integrina beta3/inmunología , Neuraminidasa/inmunología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/inmunología , Complejo GPIb-IX de Glicoproteína Plaquetaria/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Animales , Plaquetas , Western Blotting , Citometría de Flujo , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Neuraminidasa/antagonistas & inhibidores
10.
Genes Dis ; 2(2): 173-185, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28345015

RESUMEN

Platelets play critical roles in hemostasis and thrombosis. Emerging evidence indicates that they are versatile cells and also involved in many other physiological processes and disease states. Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life threatening bleeding disorder caused by fetal platelet destruction by maternal alloantibodies developed during pregnancy. Gene polymorphisms cause platelet surface protein incompatibilities between mother and fetus, and ultimately lead to maternal alloimmunization. FNAIT is the most common cause of intracranial hemorrhage in full-term infants and can also lead to intrauterine growth retardation and miscarriage. Proper diagnosis, prevention and treatment of FNAIT is challenging due to insufficient knowledge of the disease and a lack of routine screening as well as its frequent occurrence in first pregnancies. Given the ethical difficulties in performing basic research on human fetuses and neonates, animal models are essential to improve our understanding of the pathogenesis and treatment of FNAIT. The aim of this review is to provide an overview on platelets, hemostasis and thrombocytopenia with a focus on the advancements made in FNAIT by utilizing animal models.

11.
PLoS One ; 9(11): e113679, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415317

RESUMEN

BACKGROUND: We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI. AIMS: To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway. METHODS AND RESULTS: Human and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P) surface expression) and integrin αIIbß3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbß3 activation. CONCLUSION: Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.


Asunto(s)
Plaquetas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Activación Plaquetaria/fisiología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Plaquetas/citología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Factor 4 Asociado a Receptor de TNF/genética , Factor 4 Asociado a Receptor de TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...