Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1360364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576426

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods: The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results: The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion: Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.

2.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328237

RESUMEN

A key feature of arteriogenesis is capillary-to-arterial endothelial cell fate transition. Although a number of studies in the past two decades suggested this process is driven by VEGF activation of Notch signaling, how arteriogenesis is regulated remains poorly understood. Here we report that arterial specification is mediated by fluid shear stress (FSS) independent of VEGFR2 signaling and that a decline in VEGFR2 signaling is required for arteriogenesis to fully take place. VEGF does not induce arterial fate in capillary ECs and, instead, counteracts FSS-driven capillary-to-arterial cell fate transition. Mechanistically, FSS-driven arterial program involves both Notch-dependent and Notch-independent events. Sox17 is the key mediator of the FSS-induced arterial specification and a target of VEGF-FSS competition. These findings suggest a new paradigm of VEGF-FSS crosstalk coordinating angiogenesis, arteriogenesis and capillary maintenance.

3.
bioRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293157

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.

4.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175710

RESUMEN

Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.


Asunto(s)
Aterosclerosis , Lipasa , Ratones , Animales , Triglicéridos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Metabolismo de los Lípidos , Endotelio Vascular/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo
5.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35695893

RESUMEN

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Asunto(s)
Células Endoteliales , Factores de Transcripción de Tipo Kruppel , Mitocondrias , Estrés Mecánico , Aterosclerosis/patología , Sistemas CRISPR-Cas , Señalización del Calcio , Células Endoteliales/metabolismo , Humanos , Inflamación , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , MAP Quinasa Quinasa 5 , MAP Quinasa Quinasa Quinasa 2 , MAP Quinasa Quinasa Quinasa 3 , Mitocondrias/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Especies Reactivas de Oxígeno
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504019

RESUMEN

Endothelial cell (EC) sensing of wall fluid shear stress (FSS) from blood flow governs vessel remodeling to maintain FSS at a specific magnitude or set point in healthy vessels. Low FSS triggers inward remodeling to restore normal FSS but the regulatory mechanisms are unknown. In this paper, we describe the signaling network that governs inward artery remodeling. FSS induces Smad2/3 phosphorylation through the type I transforming growth factor (TGF)-ß family receptor Alk5 and the transmembrane protein Neuropilin-1, which together increase sensitivity to circulating bone morphogenetic protein (BMP)-9. Smad2/3 nuclear translocation and target gene expression but not phosphorylation are maximal at low FSS and suppressed at physiological high shear. Reducing flow by carotid ligation in rodents increases Smad2/3 nuclear localization, while the resultant inward remodeling is blocked by the EC-specific deletion of Alk5. The flow-activated MEKK3/Klf2 pathway mediates the suppression of Smad2/3 nuclear translocation at high FSS, mainly through the cyclin-dependent kinase (CDK)-2-dependent phosphosphorylation of the Smad linker region. Thus, low FSS activates Smad2/3, while higher FSS blocks nuclear translocation to induce inward artery remodeling, specifically at low FSS. These results are likely relevant to inward remodeling in atherosclerotic vessels, in which Smad2/3 is activated through TGF-ß signaling.


Asunto(s)
Arterias Carótidas/fisiología , Enfermedades de las Arterias Carótidas/prevención & control , Células Endoteliales/fisiología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Estrés Mecánico , Remodelación Vascular , Animales , Arterias Carótidas/citología , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Células Endoteliales/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
8.
Nat Commun ; 8(1): 2149, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247167

RESUMEN

Establishment of a functional vascular network is rate-limiting in embryonic development, tissue repair and engineering. During blood vessel formation, newly generated endothelial cells rapidly expand into primitive plexi that undergo vascular remodeling into circulatory networks, requiring coordinated growth inhibition and arterial-venous specification. Whether the mechanisms controlling endothelial cell cycle arrest and acquisition of specialized phenotypes are interdependent is unknown. Here we demonstrate that fluid shear stress, at arterial flow magnitudes, maximally activates NOTCH signaling, which upregulates GJA4 (commonly, Cx37) and downstream cell cycle inhibitor CDKN1B (p27). Blockade of any of these steps causes hyperproliferation and loss of arterial specification. Re-expression of GJA4 or CDKN1B, or chemical cell cycle inhibition, restores endothelial growth control and arterial gene expression. Thus, we elucidate a mechanochemical pathway in which arterial shear activates a NOTCH-GJA4-CDKN1B axis that promotes endothelial cell cycle arrest to enable arterial gene expression. These insights will guide vascular regeneration and engineering.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Conexinas/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptor Notch1/genética , Animales , Arterias/metabolismo , Arterias/fisiología , Células Cultivadas , Conexinas/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/genética , Receptor Notch1/metabolismo , Estrés Mecánico , Proteína alfa-4 de Unión Comunicante
10.
Curr Biol ; 27(14): 2219-2225.e5, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28712573

RESUMEN

Fluid shear stress due to blood flow on the vascular endothelium regulates blood vessel development, remodeling, physiology, and pathology [1, 2]. A complex consisting of PECAM-1, VE-cadherin, and vascular endothelial growth factor receptors (VEGFRs) that resides at endothelial cell-cell junctions transduces signals important for flow-dependent vasodilation, blood vessel remodeling, and atherosclerosis. PECAM-1 transduces forces to activate src family kinases (SFKs), which phosphorylate and transactivate VEGFRs [3-5]. By contrast, VE-cadherin functions as an adaptor that interacts with VEGFRs through their respective cytoplasmic domains and promotes VEGFR activation in flow [6]. Indeed, shear stress triggers rapid increases in force across PECAM-1 but decreases the force across VE-cadherin, in close association with downstream signaling [5]. Interestingly, VE-cadherin cytoplasmic tyrosine Y658 can be phosphorylated by SFKs [7], which is maximally induced by low shear stress in vitro and in vivo [8]. These considerations prompted us to address the involvement of VE-cadherin cytoplasmic tyrosines in flow sensing. We found that phosphorylation of a small pool of VE-cadherin on Y658 is essential for flow sensing through the junctional complex. Y658 phosphorylation induces dissociation of p120ctn, which allows binding of the polarity protein LGN. LGN is then required for multiple flow responses in vitro and in vivo, including activation of inflammatory signaling at regions of disturbed flow, and flow-dependent vascular remodeling. Thus, endothelial flow mechanotransduction through the junctional complex is mediated by a specific pool of VE-cadherin that is phosphorylated on Y658 and bound to LGN.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Endotelio Vascular/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Antígenos CD/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transducción de Señal , Estrés Mecánico
12.
Nat Cell Biol ; 18(10): 1043-53, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27595237

RESUMEN

Atherosclerosis is primarily a disease of lipid metabolism and inflammation; however, it is also closely associated with endothelial extracellular matrix (ECM) remodelling, with fibronectin accumulating in the laminin-collagen basement membrane. To investigate how fibronectin modulates inflammation in arteries, we replaced the cytoplasmic tail of the fibronectin receptor integrin α5 with that of the collagen/laminin receptor integrin α2. This chimaera suppressed inflammatory signalling in endothelial cells on fibronectin and in knock-in mice. Fibronectin promoted inflammation by suppressing anti-inflammatory cAMP. cAMP was activated through endothelial prostacyclin secretion; however, this was ECM-independent. Instead, cells on fibronectin suppressed cAMP via enhanced phosphodiesterase (PDE) activity, through direct binding of integrin α5 to phosphodiesterase-4D5 (PDE4D5), which induced PP2A-dependent dephosphorylation of PDE4D5 on the inhibitory site Ser651. In vivo knockdown of PDE4D5 inhibited inflammation at athero-prone sites. These data elucidate a molecular mechanism linking ECM remodelling and inflammation, thereby identifying a new class of therapeutic targets.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Inflamación/metabolismo , Integrina alfa5/metabolismo , Transducción de Señal , Animales , Antiinflamatorios/uso terapéutico , Aterosclerosis/metabolismo , Membrana Basal/metabolismo , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Ratones
13.
J Cell Biol ; 214(7): 807-16, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27646277

RESUMEN

Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Mecanotransducción Celular , Estrés Mecánico , Telangiectasia Hemorrágica Hereditaria/patología , Malformaciones Arteriovenosas/patología , Derivación Arteriovenosa Quirúrgica , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Endoglina/metabolismo , Células Endoteliales/metabolismo , Eliminación de Gen , Células HEK293 , Hemorreología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Pericitos/metabolismo , Flujo Sanguíneo Regional , Retina/patología , Transducción de Señal , Solubilidad
14.
Am J Hum Genet ; 98(6): 1082-1091, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27181681

RESUMEN

Nonsyndromic patent ductus arteriosus (PDA) is a common congenital heart defect (CHD) with both inherited and acquired causes, but the disease mechanisms have remained elusive. Using combined genome-wide linkage analysis and whole-exome sequencing (WES), we identified independent mutations in PRDM6, which encodes a nuclear protein that is specific to vascular smooth muscle cells (VSMC), has histone methyl transferase activities, and acts as a transcriptional suppressor of contractile proteins. In vitro assays showed that the mutations cause loss of function either by intracellular redistribution of the protein and/or by alteration of its methyltransferase activities. Wild-type embryonic ductus arteriosus (DA) exhibited high levels of PRDM6, which rapidly declined postnatally as the number of VSMCs necessary for ductus contraction increased. This dynamic change suggests that PRDM6 plays a key role in maintaining VSMCs in an undifferentiated stage in order to promote their proliferation and that its loss of activity results in premature differentiation and impaired remodeling of the DA. Our findings identify PRDM6 mutations as underlying genetic causes of nonsyndromic isolated PDA in humans and implicates the wild-type protein in epigenetic regulation of ductus remodeling.


Asunto(s)
Conducto Arterioso Permeable/genética , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Mutación/genética , Factores de Transcripción/genética , Diferenciación Celular , Células Cultivadas , Epigénesis Genética , Femenino , Técnica del Anticuerpo Fluorescente , Histonas , Humanos , Immunoblotting , Masculino , Músculo Liso Vascular/citología , Linaje
15.
J Clin Invest ; 126(3): 821-8, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26928035

RESUMEN

Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies.


Asunto(s)
Aterosclerosis/fisiopatología , Endotelio Vascular/fisiopatología , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Humanos , Placa Aterosclerótica/fisiopatología , Remodelación Vascular
16.
J Cell Biol ; 208(7): 975-86, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25800053

RESUMEN

Endothelial responses to fluid shear stress are essential for vascular development and physiology, and determine the formation of atherosclerotic plaques at regions of disturbed flow. Previous work identified VE-cadherin as an essential component, along with PECAM-1 and VEGFR2, of a complex that mediates flow signaling. However, VE-cadherin's precise role is poorly understood. We now show that the transmembrane domain of VE-cadherin mediates an essential adapter function by binding directly to the transmembrane domain of VEGFR2, as well as VEGFR3, which we now identify as another component of the junctional mechanosensory complex. VEGFR2 and VEGFR3 signal redundantly downstream of VE-cadherin. Furthermore, VEGFR3 expression is observed in the aortic endothelium, where it contributes to flow responses in vivo. In summary, this study identifies a novel adapter function for VE-cadherin mediated by transmembrane domain association with VEGFRs.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Mecanotransducción Celular/fisiología , Neovascularización Fisiológica/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Estrés Mecánico , Estrés Fisiológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
17.
Elife ; 42015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25643397

RESUMEN

Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or 'set point', that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo.


Asunto(s)
Estrés Fisiológico , Venas Umbilicales/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Remodelación Vascular , Animales , Endotelio Vascular/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Pez Cebra
18.
Curr Opin Cell Biol ; 25(5): 613-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23797029

RESUMEN

Forces acting on cells govern many important regulatory events during development, normal physiology, and disease processes. Integrin-mediated adhesions, which transmit forces between the extracellular matrix and the actin cytoskeleton, play a central role in transducing effects of forces to regulate cell functions. Recent work has led to major insights into the molecular mechanisms by which these adhesions respond to forces to control cellular signaling pathways. We briefly summarize effects of forces on organs, tissues, and cells; and then discuss recent advances toward understanding molecular mechanisms.


Asunto(s)
Adhesión Celular , Integrinas/metabolismo , Mecanotransducción Celular , Citoesqueleto de Actina/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos
19.
Circulation ; 126(22): 2589-600, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23091063

RESUMEN

BACKGROUND: Arteriogenesis and collateral formation are complex processes requiring integration of multiple inputs to coordinate vessel branching, growth, maturation, and network size. Factors regulating these processes have not been determined. METHODS AND RESULTS: We used an inhibitor of NFκB activation (IκBαSR) under control of an endothelial-specific inducible promoter to selectively suppress endothelial nuclear factor-κB activation during development, in the adult vasculature, or in vitro. Inhibition of nuclear factor-κB activation resulted in formation of an excessively branched arterial network that was composed of immature vessels and provided poor distal tissue perfusion. Molecular analysis demonstrated reduced adhesion molecule expression leading to decreased monocyte influx, reduced hypoxia-inducible factor-1α levels, and a marked decrease in δ-like ligand 4 expression with a consequent decrease in Notch signaling. The latter was the principal cause of increased vascular branching as treatment with Jagged-1 peptide reduced the size of the arterial network to baseline levels. CONCLUSIONS: These findings identify nuclear factor-κB as a key regulator of adult and developmental arteriogenesis and collateral formation. Nuclear factor-κB achieves this by regulating hypoxia-inducible factor-1α-dependent expression of vascular endothelial growth factor-A and platelet-derived growth factor-BB, which are necessary for the development and maturation of the arterial collateral network, and by regulating δ-like ligand 4 expression, which in turn determines the size and complexity of the network.


Asunto(s)
Células Endoteliales/metabolismo , Isquemia/fisiopatología , Subunidad p50 de NF-kappa B/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Animales , Animales Recién Nacidos , Becaplermina , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Ratones , Ratones Transgénicos , Subunidad p50 de NF-kappa B/genética , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Hum Mol Genet ; 21(8): 1835-47, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22228094

RESUMEN

Lowe syndrome (LS) is a devastating, X-linked genetic disease characterized by the presence of congenital cataracts, profound learning disabilities and renal dysfunction. Unfortunately, children affected with LS often die early of health complications including renal failure. Although this syndrome was first described in the early 1950s and the affected gene, OCRL1, was identified more than 17 years ago, the mechanism by which Ocrl1 defects lead to LS's symptoms remains unknown. Here we show that LS display characteristics of a ciliopathy. Specifically, we found that patients' cells have defects in the assembly of primary cilia and this phenotype was reproduced in cell lines by knock-down of Ocrl1. Importantly, this defect could be rescued by re-introduction of WT Ocrl1 in both patient and Ocrl1 knock-down cells. In addition, a zebrafish animal model of LS exhibited cilia defects and multiple morphological and anatomical abnormalities typically seen in ciliopathies. Mechanistically, we show that Ocrl1 is involved in protein trafficking to the primary cilia in an Rab8-and IPIP27/Ses-dependent manner. Taking into consideration the relevance of the signaling pathways hosted by the primary cilium, our results suggest hitherto unrecognized mechanisms by which Ocrl1 deficiency may contribute to the phenotypic characteristics of LS. This conceptual change in our understanding of the disease etiology may provide an alternative avenue for the development of therapies.


Asunto(s)
Cilios/metabolismo , Cilios/ultraestructura , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Antígenos/metabolismo , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Embrión no Mamífero , Endosomas/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Síndrome Oculocerebrorrenal/patología , Monoéster Fosfórico Hidrolasas/deficiencia , Transporte de Proteínas , ARN Interferente Pequeño , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...