Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568964

RESUMEN

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Asunto(s)
Cloruros , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruros/metabolismo , Células Endoteliales/metabolismo , Canales Catiónicos TRPV/metabolismo , Transducción de Señal/fisiología
2.
Nat Commun ; 14(1): 1167, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859399

RESUMEN

Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.


Asunto(s)
Síndrome de Angelman , Canales Iónicos , Ácido Linoleico , Animales , Femenino , Humanos , Masculino , Ratones , Alelos , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/genética , Modelos Animales de Enfermedad , Discapacidad Intelectual , Canales Iónicos/genética , Ácido Linoleico/farmacología
3.
Cell Rep ; 40(10): 111306, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070688

RESUMEN

TRPV4 channel activation in endothelial cells leads to vasodilation, while impairment of TRPV4 activity is implicated in vascular dysfunction. Strategies that increase TRPV4 activity could enhance vasodilation and ameliorate vascular disorders. Here, we show that supplementation with eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid known to have beneficial cardiovascular effects, increases TRPV4 activity in human endothelial cells of various vascular beds. Mice carrying the C. elegans FAT-1 enzyme, which converts ω-6 to ω-3 polyunsaturated fatty acids, display higher EPA content and increased TRPV4-mediated vasodilation in mesenteric arteries. Likewise, mice fed an EPA-enriched diet exhibit enhanced and prolonged TRPV4-dependent vasodilation in an endothelial cell-specific manner. We also show that EPA supplementation reduces TRPV4 desensitization, which contributes to the prolonged vasodilation. Neutralization of positive charges in the TRPV4 N terminus impairs the effect of EPA on channel desensitization. These findings highlight the beneficial effects of manipulating fatty acid content to enhance TRPV4-mediated vasodilation.


Asunto(s)
Ácidos Grasos Omega-3 , Vasodilatación , Animales , Caenorhabditis elegans , Dieta , Células Endoteliales , Ácidos Grasos Omega-3/farmacología , Humanos , Ratones , Canales Catiónicos TRPV/genética
4.
Cell Rep ; 39(11): 110937, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705057

RESUMEN

Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6-/- mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury.


Asunto(s)
Endotoxemia , Etanol , Histidina , Mucosa Intestinal , Canales Catiónicos TRPV , Acetaldehído/toxicidad , Animales , Células CACO-2 , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Etanol/toxicidad , Histidina/farmacología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
5.
ACS Med Chem Lett ; 12(4): 572-578, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859797

RESUMEN

The overactivation of transient receptor potential canonical 3 (TRPC3) is associated with neurodegenerative diseases and hypertension. Pyrazole 3 (Pyr3) is reported as the most selective TRPC3 inhibitor, but it has two inherent structural limitations: (1) the labile ester moiety leads to its rapid hydrolysis to the inactive Pyr8 in vivo, and (2) the alkylating trichloroacrylic amide moiety is known to be toxic. To circumvent these limitations, we designed a series of conformationally restricted Pyr3 analogues and reported that compound 20 maintains high potency and selectivity for human TRPC3 over its closely related TRP channels. It has significantly improved metabolic stability compared with Pyr3 and has a good safety profile. Preliminary evaluation of 20 demonstrated its ability to rescue Aß-induced neuron damage with similar potency to that of Pyr3 in vitro. Collectively, these results suggest that 20 represents a promising scaffold to potentially ameliorate the symptoms associated with TRPC3-mediated neurological and cardiovascular disorders.

6.
J Neurosci ; 41(3): 408-423, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33239401

RESUMEN

Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channel contributes to neurogenic inflammation and pain hypersensitivity, in part because of its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, and behavioral, biochemical, and functional analyses in Caenorhabditis elegans As capsaicin elicits heat and pain sensations in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo.


Asunto(s)
Caenorhabditis elegans/fisiología , Metabolismo de los Lípidos , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/deficiencia , Canales Catiónicos TRPV/fisiología , Animales , Conducta Animal , Proteínas de Caenorhabditis elegans/biosíntesis , Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Dieta , Suplementos Dietéticos , Células HEK293 , Humanos , Neuronas/metabolismo , Fosfatidilinositoles/farmacología , Canales Catiónicos TRPV/genética
7.
Nat Commun ; 11(1): 3938, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753574

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 11(1): 2997, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561714

RESUMEN

PIEZO2 is the essential transduction channel for touch discrimination, vibration, and proprioception. Mice and humans lacking Piezo2 experience severe mechanosensory and proprioceptive deficits and fail to develop tactile allodynia. Bradykinin, a proalgesic agent released during inflammation, potentiates PIEZO2 activity. Molecules that decrease PIEZO2 function could reduce heightened touch responses during inflammation. Here, we find that the dietary fatty acid margaric acid (MA) decreases PIEZO2 function in a dose-dependent manner. Chimera analyses demonstrate that the PIEZO2 beam is a key region tuning MA-mediated channel inhibition. MA reduces neuronal action potential firing elicited by mechanical stimuli in mice and rat neurons and counteracts PIEZO2 sensitization by bradykinin. Finally, we demonstrate that this saturated fatty acid decreases PIEZO2 currents in touch neurons derived from human induced pluripotent stem cells. Our findings report on a natural product that inhibits PIEZO2 function and counteracts neuronal mechanical sensitization and reveal a key region for channel inhibition.


Asunto(s)
Ácidos Grasos/administración & dosificación , Canales Iónicos/antagonistas & inhibidores , Mecanotransducción Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Propiocepción/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Algoritmos , Animales , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Propiocepción/genética , Propiocepción/fisiología , Ratas , Tacto/efectos de los fármacos , Tacto/fisiología
9.
J Cell Sci ; 132(23)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31722978

RESUMEN

TRP channels of the transient receptor potential ion channel superfamily are involved in a wide variety of mechanosensory processes, including touch sensation, pain, blood pressure regulation, bone loading and detection of cerebrospinal fluid flow. However, in many instances it is unclear whether TRP channels are the primary transducers of mechanical force in these processes. In this study, we tested stretch activation of eleven TRP channels from six mammalian subfamilies. We found that these TRP channels were insensitive to short membrane stretches in cellular systems. Furthermore, we purified TRPC6 and demonstrated its insensitivity to stretch in liposomes, an artificial bilayer system free from cellular components. Additionally, we demonstrated that, when expressed in C. elegans neurons, mouse TRPC6 restores the mechanoresponse of a touch insensitive mutant but requires diacylglycerol for activation. These results strongly suggest that the mammalian members of the TRP ion channel family are insensitive to tension induced by cell membrane stretching and, thus, are more likely to be activated by cytoplasmic tethers or downstream components and to act as amplifiers of cellular mechanosensory signaling cascades.


Asunto(s)
Canal Catiónico TRPC6/química , Animales , Células CHO , Caenorhabditis elegans/metabolismo , Cricetulus , Electrofisiología , Células HEK293 , Células HeLa , Humanos , Mecanotransducción Celular/fisiología , Neuronas/metabolismo , Proteolípidos/química
10.
Nat Commun ; 10(1): 1200, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867417

RESUMEN

Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.


Asunto(s)
Anemia Hemolítica Congénita/dietoterapia , Grasas de la Dieta/metabolismo , Hidropesía Fetal/dietoterapia , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Anemia Hemolítica Congénita/genética , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Grasas de la Dieta/administración & dosificación , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Humanos , Hidropesía Fetal/genética , Canales Iónicos/genética , Metabolismo de los Lípidos/fisiología , Ratones , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp
11.
Stem Cell Rev Rep ; 15(1): 67-81, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30324358

RESUMEN

The potential of human mesenchymal stromal/stem cells (MSCs) including oral stem cells (OSCs) as a cell source to derive functional neurons has been inconclusive. Here we tested a number of human OSCs for their neurogenic potential compared to non-OSCs and employed various neurogenic induction methods. OSCs including dental pulp stem cells (DPSCs), gingiva-derived mesenchymal stem cells (GMSCs), stem cells from apical papilla and non-OSCs including bone marrow MSCs (BMMSCs), foreskin fibroblasts and dermal fibroblasts using non-neurosphere-mediated or neurosphere-mediated methods to guide them toward neuronal lineages. Cells were subjected to RT-qPCR, immunocytofluorescence to detect the expression of neurogenic genes or electrophysiological analysis at final stage of maturation. We found that induced DPSCs and GMSCs overall appeared to be more neurogenic compared to other cells either morphologically or levels of neurogenic gene expression. Nonetheless, of all the neural induction methods employed, only one neurosphere-mediated method yielded electrophysiological properties of functional neurons. Under this method, cells expressed increased neural stem cell markers, nestin and SOX1, in the first phase of differentiation. Neuronal-like cells expressed ßIII-tubulin, CNPase, GFAP, MAP-2, NFM, pan-Nav, GAD67, Nav1.6, NF1, NSE, PSD95, and synapsin after the second phase of differentiation to maturity. Electrophysiological experiments revealed that 8.3% of DPSC-derived neuronal cells and 21.2% of GMSC-derived neuronal cells displayed action potential, although no spontaneous excitatory/inhibitory postsynaptic action potential was observed. We conclude that DPSCs and GMSCs have the potential to become neuronal cells in vitro, therefore, these cells may be used as a source for neural regeneration.


Asunto(s)
Potenciales de Acción/fisiología , Diferenciación Celular , Pulpa Dental/citología , Encía/citología , Células Madre Mesenquimatosas/citología , Neurogénesis , Adolescente , Adulto , Células Madre Adultas/citología , Diferenciación Celular/genética , Regulación de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Esferoides Celulares/citología , Adulto Joven
12.
J Biol Chem ; 293(41): 16102-16114, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30139744

RESUMEN

The transient receptor potential ion channels support Ca2+ permeation in many organs, including the heart, brain, and kidney. Genetic mutations in transient receptor potential cation channel subfamily C member 3 (TRPC3) are associated with neurodegenerative diseases, memory loss, and hypertension. To better understand the conformational changes that regulate TRPC3 function, we solved the cryo-EM structures for the full-length human TRPC3 and its cytoplasmic domain (CPD) in the apo state at 5.8- and 4.0-Å resolution, respectively. These structures revealed that the TRPC3 transmembrane domain resembles those of other TRP channels and that the CPD is a stable module involved in channel assembly and gating. We observed the presence of a C-terminal domain swap at the center of the CPD where horizontal helices (HHs) transition into a coiled-coil bundle. Comparison of TRPC3 structures revealed that the HHs can reside in two distinct positions. Electrophysiological analyses disclosed that shortening the length of the C-terminal loop connecting the HH with the TRP helices increases TRPC3 activity and that elongating the length of the loop has the opposite effect. Our findings indicate that the C-terminal loop affects channel gating by altering the allosteric coupling between the cytoplasmic and transmembrane domains. We propose that molecules that target the HH may represent a promising strategy for controlling TRPC3-associated neurological disorders and hypertension.


Asunto(s)
Activación del Canal Iónico , Canales Catiónicos TRPC/química , Regulación Alostérica , Repetición de Anquirina , Células HEK293 , Humanos , Mutación , Conformación Proteica en Hélice alfa , Dominios Proteicos , Canales Catiónicos TRPC/genética
13.
J Vis Exp ; (137)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-30035769

RESUMEN

Polymodal ion channels transduce multiple stimuli of different natures into allosteric changes; these dynamic conformations are challenging to determine and remain largely unknown. With recent advances in single-particle cryo-electron microscopy (cryo-EM) shedding light on the structural features of agonist binding sites and the activation mechanism of several ion channels, the stage is set for an in-depth dynamic analysis of their gating mechanisms using spectroscopic approaches. Spectroscopic techniques such as electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) have been mainly restricted to the study of prokaryotic ion channels that can be purified in large quantities. The requirement for large amounts of functional and stable membrane proteins has hampered the study of mammalian ion channels using these approaches. EPR and DEER offer many advantages, including determination of the structure and dynamic changes of mobile protein regions, albeit at low resolution, that might be difficult to obtain by X-ray crystallography or cryo-EM, and monitoring reversible gating transition (i.e., closed, open, sensitized, and desensitized). Here, we provide protocols for obtaining milligrams of functional detergent-solubilized transient receptor potential cation channel subfamily V member 1 (TRPV1) that can be labeled for EPR and DEER spectroscopy.


Asunto(s)
Análisis Espectral/métodos , Canales Catiónicos TRPV/genética , Células HEK293 , Humanos , Canales Catiónicos TRPV/metabolismo
14.
J Biol Chem ; 293(26): 10381-10391, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29752403

RESUMEN

The kidney maintains the internal milieu by regulating the retention and excretion of proteins, ions, and small molecules. The glomerular podocyte forms the slit diaphragm of the ultrafiltration filter, whose damage leads to progressive kidney failure and focal segmental glomerulosclerosis (FSGS). The canonical transient receptor potential 6 (TRPC6) ion channel is expressed in the podocyte, and mutations in its cytoplasmic domain cause FSGS in humans. In vitro evaluation of disease-causing mutations in TRPC6 has revealed that these genetic alterations result in abnormal ion channel gating. However, the mechanism whereby the cytoplasmic domain modulates TRPC6 function is largely unknown. Here, we report a cryo-EM structure of the cytoplasmic domain of murine TRPC6 at 3.8 Å resolution. The cytoplasmic fold of TRPC6 is characterized by an inverted dome-like chamber pierced by four radial horizontal helices that converge into a vertical coiled-coil at the central axis. Unlike other TRP channels, TRPC6 displays a unique domain swap that occurs at the junction of the horizontal helices and coiled-coil. Multiple FSGS mutations converge at the buried interface between the vertical coiled-coil and the ankyrin repeats, which form the dome, suggesting these regions are critical for allosteric gating modulation. This functionally critical interface is a potential target for drug design. Importantly, dysfunction in other family members leads to learning deficits (TRPC1/4/5) and ataxia (TRPC3). Our data provide a structural framework for the mechanistic investigation of the TRPC family.


Asunto(s)
Microscopía por Crioelectrón , Citoplasma/metabolismo , Canal Catiónico TRPC6/química , Canal Catiónico TRPC6/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Mutación , Dominios Proteicos , Canal Catiónico TRPC6/genética
15.
Curr Opin Struct Biol ; 51: 92-98, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29602157

RESUMEN

Membrane lipid composition and remodeling influence the function of ion channels. Polyunsaturated fatty acids (PUFAs) and their derivatives modulate ion channel function; whether this effect occurs directly by binding to the protein or indirectly through alteration of membranes' mechanical properties has been difficult to distinguish. There are a large number of studies addressing the effect of fatty acids; recent structural and functional analyses have identified binding sites and provided further evidence for the role of the plasma membrane in ion channel function. Here, we review cation channels that do not share a common topology or lipid-binding signature sequence, but for which there are recent compelling data that support both direct and indirect modulation by PUFAs or their derivatives.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Lípidos de la Membrana/metabolismo , Canales Iónicos/química , Lípidos de la Membrana/química , Unión Proteica , Transducción de Señal
16.
Cell Rep ; 21(1): 246-258, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978477

RESUMEN

Dietary consumption of ω-3 polyunsaturated fatty acids (PUFAs), present in fish oils, is known to improve the vascular response, but their molecular targets remain largely unknown. Activation of the TRPV4 channel has been implicated in endothelium-dependent vasorelaxation. Here, we studied the contribution of ω-3 PUFAs to TRPV4 function by precisely manipulating the fatty acid content in Caenorhabditis elegans. By genetically depriving the worms of PUFAs, we determined that the metabolism of ω-3 fatty acids is required for TRPV4 activity. Functional, lipid metabolome, and biophysical analyses demonstrated that ω-3 PUFAs enhance TRPV4 function in human endothelial cells and support the hypothesis that lipid metabolism and membrane remodeling regulate cell reactivity. We propose a model whereby the eicosanoid's epoxide group location increases membrane fluidity and influences the endothelial cell response by increasing TRPV4 channel activity. ω-3 PUFA-like molecules might be viable antihypertensive agents for targeting TRPV4 to reduce systemic blood pressure.


Asunto(s)
Antihipertensivos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Canales Catiónicos TRPV/genética , Animales , Animales Modificados Genéticamente , Antihipertensivos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ácidos Grasos Omega-3/metabolismo , Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , Metaboloma , Forboles/farmacología , Fosfolípidos/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
17.
Sci Rep ; 7(1): 9861, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852163

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) channel is an essential component of the cellular mechanism through which noxious stimuli evoke pain. Functional and structural characterizations of TRPV1 shed light on vanilloid activation, yet the mechanisms for temperature and proton gating remain largely unknown. Spectroscopic approaches are needed to understand the mechanisms by which TRPV1 translates diverse stimuli into channel opening. Here, we have engineered a minimal cysteine-less rat TRPV1 construct (eTRPV1) that can be stably purified and reconstituted for spectroscopic studies. Biophysical analyses of TRPV1 constructs reveal that the S5-pore helix loop influences protein stability and vanilloid and proton responses, but not thermal sensitivity. Cysteine mutants retain function and stability for double electron-electron resonance (DEER) and electron paramagnetic resonance (EPR) spectroscopies. DEER measurements in the closed state demonstrate that eTRPV1 reports distances in the extracellular vestibule, equivalent to those observed in the apo TRPV1 structure. EPR measurements show a distinct pattern of mobilities and spectral features, in detergent and liposomes, for residues at the pore domain that agree with their location in the TRPV1 structure. Our results set the stage for a systematic characterization of TRPV1 using spectroscopic approaches to reveal conformational changes compatible with thermal- and ligand-dependent gating.


Asunto(s)
Expresión Génica , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Cisteína/química , Simulación de Dinámica Molecular , Mutación , Fosforilación , Conformación Proteica , Estabilidad Proteica , Protones , Ratas , Proteínas Recombinantes , Análisis Espectral , Canales Catiónicos TRPV/química , Xenopus
18.
Neuron ; 77(4): 667-79, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23439120

RESUMEN

The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP(2)), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP(2), PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other "receptor-operated" TRP channels.


Asunto(s)
Calor/efectos adversos , Canales Iónicos/metabolismo , Lípidos/fisiología , Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/farmacología , Células Cultivadas , Células Sf9/metabolismo , Spodoptera
19.
Structure ; 20(8): 1332-42, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22771214

RESUMEN

In K+ channels, rearrangements of the pore outer vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggests these movements to be modest in magnitude. In this study, we show that under physiological conditions, the KcsA outer vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+ -bound Y82C-KcsA in the closed state, together with electron paramagnetic resonance distance measurements in the KcsA outer vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation.


Asunto(s)
Proteínas Bacterianas/química , Cadmio/química , Complejos de Coordinación/química , Canales de Potasio/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Liposomas/química , Simulación de Dinámica Molecular , Canales de Potasio/genética , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Streptomyces lividans , Termodinámica
20.
J Biol Chem ; 286(45): 39091-9, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21908602

RESUMEN

Emerging evidence suggests that K(+) channel inactivation involves coupling between residues in adjacent regions of the channel. Human ether-a-go-go-related gene-1 (hERG1) K(+) channels undergo a fast inactivation gating process that is crucial for maintaining electrical stability in the heart. The molecular mechanisms that drive inactivation in hERG1 channels are unknown. Using alanine scanning mutagenesis, we show that a pore helix residue (Thr-618) that points toward the S5 segment is critical for normal inactivation gating. Amino acid substitutions at position 618 modulate the free energy of inactivation gating, causing enhanced or reduced inactivation. Mutation of an S5 residue that is predicted to be adjacent to Thr-618 (W568L) abolishes inactivation and alters ion selectivity. The introduction of the Thr-618-equivalent residue in Kv1.5 enhances inactivation. Molecular dynamic simulations of the Kv1.2 tetramer reveal van der Waals coupling between hERG1 618- and 568-equivalent residues and a significant increase in interaction energies when threonine is introduced at the 618-equivalent position. We propose that coupling between the S5 segment and pore helix may participate in the inactivation process in hERG1 channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico/fisiología , Proteínas Musculares/metabolismo , Sustitución de Aminoácidos , Animales , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Modelos Moleculares , Proteínas Musculares/genética , Mutagénesis , Mutación Missense , Miocardio/metabolismo , Estructura Secundaria de Proteína , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...