Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(4): 527-542.e9, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38513656

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic conditions characterized by periods of spontaneous intestinal inflammation and are increasing in industrialized populations. Combined with host genetics, diet and gut bacteria are thought to contribute prominently to IBDs, but mechanisms are still emerging. In mice lacking the IBD-associated cytokine, interleukin-10, we show that a fiber-deprived gut microbiota promotes the deterioration of colonic mucus, leading to lethal colitis. Inflammation starts with the expansion of natural killer cells and altered immunoglobulin-A coating of some bacteria. Lethal colitis is then driven by Th1 immune responses to increased activities of mucin-degrading bacteria that cause inflammation first in regions with thinner mucus. A fiber-free exclusive enteral nutrition diet also induces mucus erosion but inhibits inflammation by simultaneously increasing an anti-inflammatory bacterial metabolite, isobutyrate. Our findings underscore the importance of focusing on microbial functions-not taxa-contributing to IBDs and that some diet-mediated functions can oppose those that promote disease.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Microbiota , Ratones , Animales , Enfermedades Inflamatorias del Intestino/microbiología , Colitis/microbiología , Inflamación , Dieta , Predisposición Genética a la Enfermedad , Bacterias
2.
Nat Microbiol ; 8(10): 1863-1879, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696941

RESUMEN

Alterations in the gut microbiome, including diet-driven changes, are linked to the rising prevalence of food allergy. However, little is known about how specific gut bacteria trigger the breakdown of oral tolerance. Here we show that depriving specific-pathogen-free mice of dietary fibre leads to a gut microbiota signature with increases in the mucin-degrading bacterium Akkermansia muciniphila. This signature is associated with intestinal barrier dysfunction, increased expression of type 1 and 2 cytokines and IgE-coated commensals in the colon, which result in an exacerbated allergic reaction to food allergens, ovalbumin and peanut. To demonstrate the causal role of A. muciniphila, we employed a tractable synthetic human gut microbiota in gnotobiotic mice. The presence of A. muciniphila within the microbiota, combined with fibre deprivation, resulted in stronger anti-commensal IgE coating and innate type-2 immune responses, which worsened symptoms of food allergy. Our study provides important insights into how gut microbes can regulate immune pathways of food allergy in a diet-dependent manner.


Asunto(s)
Hipersensibilidad a los Alimentos , Verrucomicrobia , Humanos , Ratones , Animales , Verrucomicrobia/metabolismo , Hipersensibilidad a los Alimentos/microbiología , Akkermansia , Inmunoglobulina E/metabolismo
3.
Res Sq ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993463

RESUMEN

Inflammatory bowel disease (IBD) is a chronic condition characterized by periods of spontaneous intestinal inflammation and is increasing in industrialized populations. Combined with host genetic predisposition, diet and gut bacteria are thought to be prominent features contributing to IBD, but little is known about the precise mechanisms involved. Here, we show that low dietary fiber promotes bacterial erosion of protective colonic mucus, leading to lethal colitis in mice lacking the IBD-associated cytokine, interleukin-10. Diet-induced inflammation is driven by mucin-degrading bacteria-mediated Th1 immune responses and is preceded by expansion of natural killer T cells and reduced immunoglobulin A coating of some bacteria. Surprisingly, an exclusive enteral nutrition diet, also lacking dietary fiber, reduced disease by increasing bacterial production of isobutyrate, which is dependent on the presence of a specific bacterial species, Eubacterium rectale. Our results illuminate a mechanistic framework using gnotobiotic mice to unravel the complex web of diet, host and microbial factors that influence IBD.

4.
STAR Protoc ; 2(2): 100607, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34179836

RESUMEN

Reproducible in vivo models are necessary to address functional aspects of the gut microbiome in various diseases. Here, we present a gnotobiotic mouse model that allows for the investigation of specific microbial functions within the microbiome. We describe how to culture 14 different well-characterized human gut species and how to verify their proper colonization in germ-free mice. This protocol can be modified to add or remove certain species of interest to investigate microbial mechanistic details in various disease models. For complete details on the use and execution of this protocol, please refer to Desai et al. (2016).


Asunto(s)
Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Vida Libre de Gérmenes , Humanos , Ratones , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...