Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 331, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886776

RESUMEN

Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 µm for platelets to 25 µm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Fenómenos Biomecánicos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Vesículas Extracelulares/metabolismo , Animales , Separación Celular/métodos
2.
J Mater Sci Mater Med ; 35(1): 7, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285297

RESUMEN

In this study, nanocomposite scaffolds of hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin (Gel) with varying amounts of HA (42-52 wt. %), PCL (42-52 wt. %), and Gel (6 wt. %) were 3D printed. Subsequently, a scaffold with optimal mechanical properties was utilized as a carrier for doxorubicin (DOX) in the treatment of bone cancer. For this purpose, HA nanoparticles were first synthesized by the hydrothermal conversion of Acropora coral and characterized by using different techniques. Also, a compression test was performed to investigate the mechanical properties of the fabricated scaffolds. The mineralization of the optimal scaffold was determined by immersing it in simulated body fluid (SBF) solution for 28 days, and the biocompatibility was investigated by seeding MG-63 osteoblast-like cells on it after 1-7 days. The obtained results showed that the average size of the synthesized HA particles was about 80 nm. The compressive modulus and strength of the scaffold with 47 wt. % HA was reported to be 0.29 GPa and 9.9 MPa, respectively, which was in the range of trabecular bones. In addition, the scaffold surface was entirely coated with an apatite layer after 28 days of soaking in SBF. Also, the efficiency and loading percentage of DOX were obtained as 30.8 and 1.6%, respectively. The drug release behavior was stable for 14 days. Cytotoxicity and adhesion evaluations showed that the fabricated scaffold had no negative effects on the viability of MG-63 cells and led to their proliferation during the investigated period. From these results, it can be concluded that the HA/PCL/Gel scaffold prepared in this study, in addition to its drug release capability, has good bioactivity, mechanical properties, and biocompatibility, and can be considered a suitable option for bone tumor treatment.


Asunto(s)
Antozoos , Durapatita , Poliésteres , Animales , Gelatina , Ingeniería de Tejidos , Doxorrubicina , Impresión Tridimensional
3.
Dent Res J (Isfahan) ; 20: 105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020251

RESUMEN

Background: The aim of the present study is to determine the possibility of isolation and characterization of the human periodontal ligament stem cells (hPDLSCs) using limited harvested periodontal ligament (PDL) tissue of only one patient's wisdom teeth (2-4 teeth) under the more compatible terms of use in clinical application without using the fetal bovine serum (FBS). Materials and Methods: In this pilot study, hPDLSCs were isolated from the impacted third molar, and tissue was scraped from the roots of the impacted third molar of 10 volunteers to enzymatically digest using collagenase. The cells were sub-cultured. The samples of the first seven patients and half of the eighth patient's sample were cultured in alpha modified of Eagle's medium (α-MEM) (-FBS) medium and the other part of the eighth patient's sample was cultured with prior medium supplemented with +FBS 15% as a control of the cultivation protocol. While for the past two patients (9th and 10th the α-MEM medium was supplemented with L-Glutamine, anti/anti 2X, and 20% knock-out serum replacement (KSR). Two more nutritious supplements (N2 and B27) were added to the medium of the tenth sample. Flow-cytometric analysis for the mesenchymal stem cell surface markers CD105, CD45, CD90, and CD73 was performed. Subsequent polymerase chain reaction was undertaken on three samples cultured with two growth media. Results: Cultivation failed in some of the samples because of the lack of cell adhesion to the culturing dish bottom (floating cells), but it was successful for the 9th and 10th patients, which were cultured in the α-MEM serum supplemented with KSR 20%. Flow cytometry analysis was positive for CD105, CD90, and CD73 and negative for CD45. The PDL stem cells (PDLSCs) expressed CD105, CD45, and CD90 but were poor for CD73. Conclusion: According to the limited number of sample tests in this study, isolation and characterization of PDLSCs from collected PDL tissue of one patient's wisdom teeth (2-4) may be possible by the proper setup in synthetic FBS-free serum.

4.
J Clin Periodontol ; 50(10): 1390-1405, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485621

RESUMEN

AIM: The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS: Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS: The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS: Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.


Asunto(s)
Polipropilenos , Animales , Ratas , Regeneración Ósea , Membranas Artificiales , Osteogénesis , Cráneo/diagnóstico por imagen , Cráneo/cirugía , Microtomografía por Rayos X
5.
Lab Chip ; 23(8): 2106-2112, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36943724

RESUMEN

Deterministic lateral displacement (DLD) is a passive separation method that separates particles by hydrodynamic size. This label-free method is a promising technique for cell separation because of its high size resolution and insensitivity to flow rate. Development of capillary-driven microfluidic technologies allows microfluidic devices to be operated without any external power for fluid pumping, lowering their total cost and complexity. Herein, we develop and test a DLD-based particle and cell sorting method that is driven entirely by capillary pressure. We show microchip self-filling, flow focusing, flow stability, and capture of separated particles. We achieve separation efficiency of 92% for particle-particle separation and more than 99% efficiency for cell-particle separation. The high performance of driven flow and separation along with simplicity of the operation and setup make it a valuable candidate for point-of-care devices.

6.
Chemosphere ; 312(Pt 1): 137185, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368538

RESUMEN

The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Ecosistema , Técnicas Biosensibles/métodos , Nanotecnología , Atención a la Salud
7.
Cell J ; 24(11): 637-646, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377213

RESUMEN

OBJECTIVE: Assessment of the cytotoxicity of novel calcium silicate-based cement is imperative in endodontics. This experimental study aimed to assess the cytotoxicity and odontogenic/osteogenic differentiation potential of a new calcium silicate/pectin cement called Nano-dentine against stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS: In this experimental study, the cement powder was synthesized by the sol-gel technique. Zirconium oxide was added as opacifier and Pectin, a plant-based polymer, and calcium chloride as the liquid to prepare the nano-based dental cement. Thirty-six root canal dentin blocks of human extracted single-canal premolars with 2 mm height, flared with #1, 2 and 3 Gates-Glidden drills were used to prepare the cement specimens. The cement, namely mineral trioxide aggregate (MTA), Biodentine, and the Nano-dentine were mixed according to the manufacturers' instructions and applied to the roots of canal dentin blocks. The cytotoxicity and odontogenic/osteogenic potential of the cement were evaluated by using SCAPs. RESULTS: SCAPs were characterized by the expression of routine mesenchymal cell markers and differentiation potential to adipocytes, osteoblasts, and chondrocytes. Cement displayed no significant differences in cytotoxicity or calcified nodules formation. Gene expression analysis showed that all three types of cement induced significant down- regulation of COLA1; however, the new cement induced significant up-regulation of RUNX2 and SPP1 compared to the control group and MTA. The new cement also induced significant up-regulation of TGFB1 and inducible nitric oxide synthase (iNOS) compared with Biodentine and MTA. CONCLUSION: The new Nano-dentin cement has higher odontogenic/osteogenic potential compared to Biodentine and MTA for differentiation of SCAPs to adipocytes, osteoblasts, and chondrocytes.

8.
Cell J ; 24(7): 370-379, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36043405

RESUMEN

OBJECTIVE: Tendon repair strategies usually are accompanied by pathological mineralization and scar tissue formation that increases the risk of re-injuries. This study aimed to establish an efficient tendon regeneration method simultaneously with a reduced risk of ectopic bone formation. MATERIALS AND METHODS: In this experimental study, tenogenic differentiation was induced through transforming growth factor- ß3 (TGFB3) treatment in combination with the inhibiting concentrations of bone morphogenetic proteins (BMP) antagonists, gremlin-2 (GREM2), and a Wnt inhibitor, namely sclerostin (SOST). The procedure's efficacy was evaluated using real-time polymerase chain reaction (qPCR) for expression analysis of tenogenic markers and osteochondrogenic marker genes. The expression level of two tenogenic markers, SCX and MKX, was also evaluated by immunocytochemistry. Sirius Red staining was performed to examine the amounts of collagen fibers. Moreover, to investigate the impact of the substrate on tenogenic differentiation, the nanofibrous scaffolds that highly resemble tendon extracellular matrix was employed. RESULTS: Aggregated features formed in spontaneous normal culture conditions followed by up-regulation of tenogenic and osteogenic marker genes, including SCX, MKX, COL1A1, RUNX2, and CTNNB1. TGFB3 treatment exaggerated morphological changes and markedly amplified tenogenic differentiation in a shorter period of time. Along with TGFB3 treatment, inhibition of BMPs by GREM2 and SOST delayed migratory events to some extent and dramatically reduced osteo-chondrogenic markers synergistically. Nanofibrous scaffolds increased tenogenic markers while declining the expression of osteo-chondrogenic genes. CONCLUSION: These findings revealed an appropriate in vitro potential of spontaneous tenogenic differentiation of eq- ASCs that can be improved by simultaneous activation of TGFB and inhibition of osteoinductive signaling pathways.

9.
J Dent (Shiraz) ; 23(2): 106-112, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35783494

RESUMEN

Statement of the Problem: In recent years, regeneration of periodontal soft tissues in the reconstruction of periodontal defects and the finding of suitable membranes and graft materials for the placement of autogenous grafts have been of great interest in various studies. In this regard, the proliferation and adhesion of regenerative cells are two linchpins of the complete regenerative process. Purpose: This study aimed to evaluate the effects of low-level laser beams on the attachment and the proliferation of human gingival fibroblasts in the presence of acellular dermal matrix (ADM). Materials and Method: All the experiments were conducted compared to tissue culture plate in four groups as follows: (1) Fibroblast+ADM+laser, (2) Fibroblast+ADM+ no laser, (3) Fibroblast + laser radiation, and (4) Fibroblast+ no laser. In this experimental study, the primary attachment was evaluated by passing 8h from seeding of 5×105 gingival fibroblasts with or without a single dose (15.6 J/cm2) of laser radiation. Cell proliferation rate was also examined at 24, 48, and 72 hours after cell culture, following exposure to 5.2 J/cm2 of laser at each day of examination. Thereafter, fibroblasts were incubated under the normal culture condition (at 37°C, 5% CO2) in high glucose Dulbecco's Modified Eagle's medium (DMEM) medium supplemented with 10% fetal bovine serum, 1% glutamax, and 1% penicillin/streptomycin. Subsequently, the cellular viability was assessed on each time point using MTS calorimetric assay. The obtained data were statistically analyzed by applying ANOVA and Tukey tests. Results: There was a significant difference among the means of these four groups in terms of the proliferation of fibroblasts at 24, 48 and 72 hours (p< 0.001). Moreover, there was no significant difference among the means of two groups in terms of fibroblastic attachment in 8 hours (p< 0.2). The fibroblast group has shown the highest proliferation rate among all groups after laser radiation. Conclusion: It was indicated that the laser radiation increases the fibroblast cell proliferation. Accordingly, although this increase was higher in the fibroblast group alone compared to the fibroblasts cultured on acellular dermal matrix, the laser radiation did not significantly increase the attachment of fibroblast cells to acellular dermal matrix.

10.
J Chromatogr A ; 1678: 463295, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35878543

RESUMEN

Deterministic lateral displacement (DLD) is a hydrodynamic method known for its high-resolution sorting of particles. It achieves this through a periodic array of obstacles and laminar flow that passively directs particles along in two different directions depending on the particles' diameter. Many prior publications have been dedicated to the structural and geometrical development of DLD arrays to improve separation performance; however, a successful separation requires much more than a well-designed array. This paper shows how separation performance is affected by process parameters. For this purpose, the design and fabrication of a DLD device are described. Then three experiments show how process parameters affect the performance of the device. The first experiment uses dye solutions to visualize the formation of a hydrodynamically focused sample stream. The second experiment shows that the particle separation performance (of 7- & 15-µm particles) is affected by the way output fluids are collected. Finally, the third experiment looks at the particle separation efficiency as the input flow rates and the ratio of buffer to sample are changed. The results show that the proper range for buffer and sample flow rate in this device is 1-10 and 0.1-1 (µl/min), respectively. The buffer to sample flow rate ratio of 10 gives the highest separation efficiency, but at a lower sample throughput. The optimized values are specific for our device but demonstrate processes that we believe are universal for DLD separations.


Asunto(s)
Hidrodinámica , Técnicas Analíticas Microfluídicas , Tamaño de la Partícula
11.
Cell Mol Life Sci ; 79(7): 350, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672609

RESUMEN

Retinal degeneration (RD) is recognized as a frequent cause of visual impairments, including inherited (Retinitis pigmentosa) and degenerative (age-related macular) eye diseases. Dental stem cells (DSCs) have recently demonstrated a promising neuroprotection potential for ocular diseases through a paracrine manner carried out by extracellular vesicles (EVs). However, effective isolation of EVs is still challenging, and isolation methods determine the composition of enriched EVs and the subsequent biological and functional effects. In the present study, we assessed two enrichment methods (micro-electromechanical systems and ultrafiltration) to isolate the EVs from stem cells from apical papilla (SCAP). The size distribution of the corresponding isolates exhibited the capability of each method to enrich different subsets of EVs, which significantly impacts their biological and functional effects. We confirmed the neuroprotection and anti-inflammatory capacity of the SCAP-EVs in vitro. Further experiments revealed the possible therapeutic effects of subretinal injection of SCAP-EVs in the Royal College of Surgeons (RCS) rat model. We found that EVs enriched by the micro-electromechanical-based device (MEMS-EVs) preserved visual function, reduced retinal cell apoptosis, and prevented thinning of the outer nuclear layer (ONL). Interestingly, the effect of MEMS-EVs was extended to the retinal ganglion cell/retinal nerve fiber layer (GCL/RNFL). This study supports the use of the microfluidics approach to enrich valuable subsets of EVs, together with the choice of SCAP as a source to derive EVs for cell-free therapy of RD.


Asunto(s)
Vesículas Extracelulares , Fármacos Neuroprotectores , Degeneración Retiniana , Animales , Humanos , Ratas , Retina , Degeneración Retiniana/terapia , Células Madre
12.
Biomimetics (Basel) ; 7(1)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35225912

RESUMEN

Developing new barrier membranes with improved biomechanical characteristics has acquired much interest owing to their crucial role in the field of periodontal tissue regeneration. In this regard, we enriched the electrospun polycaprolactone (PCL)/gelatin (Gel) membranes by adding bioglass (BG) or Cu-doped bioglass (CuBG) and examined their cellular adhesion and proliferation potential in the presence of alveolar bone marrow-derived mesenchymal stem cells (aBMSCs). The membranes were fabricated and characterized using mechanical strength, SEM, FTIR, EDX, and ICP assay. Besides, aBMSCs were isolated, characterized, and seeded with a density of 35,000 cells in each experimental group. Next, the cellular morphology, cell adhesion capacity, proliferation rate, and membrane antibacterial activity were assessed. The results displayed a significant improvement in the wettability, pore size, and Young's modulus of the PCL membrane following the incorporation of gelatin and CuBG particles. Moreover, all scaffolds exhibited reasonable biocompatibility and bioactivity in physiological conditions. Although the PCL/Gel/CuBG membrane revealed the lowest primary cell attachment, cells were grown properly and reached the confluent state after seven days. In conclusion, we found a reasonable level of attachment and proliferation of aBMSCs on all modified membranes. Meanwhile, a trace amount of Cu provided superiority for PCL/Gel/CuBG in periodontal tissue regeneration.

13.
Life (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36676038

RESUMEN

Periodontal regeneration through the employment of bone substitutes has become a feasible strategy in animal and clinical studies. In this regard, we aimed to compare the periodontal ligament stem cell behavior in the vicinity of various bone grafting substitutes. Three types of popular bone substitutes, including allografts (Regen), xenografts (Cerabone), and alloplasts (Osteon) were studied in this experimental survey. The cellular attachment was assessed after four hours using the MTS assay and SEM imaging. In addition, cellular proliferation was investigated after 1, 3, 5, and 7 days through MTS assay. Osteogenesis was studied after 21 days of cell culture in a differentiation medium (DM+) and a normal medium (DM-), by employing real-time PCR and alizarin red staining. The highest cellular attachment was seen in the xenograft group with a significant difference in comparison to the other grafting materials. Despite the relatively low primary attachment of cells to allografts, the allograft group showed the highest total proliferation rate, while the lowest proliferation capacity was found in the alloplast group. Osteogenesis fount to be accelerated mostly by xenografts in both mediums (DM+ and DM-) after 3 weeks, while alloplasts showed the lowest osteogenesis. This study revealed that the type of bone substitutes used in regenerative treatments can affect cellular behavior and as a whole allografts and xenografts showed better results.

14.
Talanta ; 235: 122815, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517671

RESUMEN

Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Electrodos de Iones Selectos , Membranas Artificiales , Polímeros , Potenciometría
15.
Sci Rep ; 11(1): 12537, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131166

RESUMEN

Differentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 µM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.


Asunto(s)
Reposicionamiento de Medicamentos/tendencias , Fenbendazol/química , Leucemia Promielocítica Aguda/tratamiento farmacológico , Tretinoina/química , Quimioinformática/tendencias , Fenbendazol/uso terapéutico , Humanos , Tretinoina/uso terapéutico
16.
Electrophoresis ; 42(20): 2018-2026, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34013529

RESUMEN

Extracellular vesicles (EVs) are cell-derived nanoscale vesicles involved in intracellular communication and the transportation of biomarkers. EVs released by mesenchymal stem cells have been recently reported to play a role in cell-free therapy of many diseases. However, the demand for better research tools to replace the tedious conventional methods used to study EVs is getting stronger. EVs' manipulation using alternating current (AC) electrokinetic forces in a microfluidic device has appeared to be a reliable and sensitive diagnosis and trapping technique. Given that different AC electrokinetic forces may contribute to the overall motion of particles and fluids in a microfluidic device, EVs' electrokinetic trapping must be examined considering all dominant forces involved depending on the experimental conditions. In this paper, AC electrokinetic trapping of EVs using an interdigitated electrode arrays is investigated. A 2D numerical simulation incorporating the two significant AC electrokinetic phenomena (Dielectrophoresis and AC electroosmosis) has been performed. Theoretical predictions are then compared with experimental results and allow for a plausible explanation of observations inconsistent with DEP theory. It is demonstrated that the inconsistencies can be attributed to a significant extent to the contribution of the AC electroosmotic effect.


Asunto(s)
Pulpa Dental , Técnicas Electroquímicas , Vesículas Extracelulares , Modelos Químicos , Células Madre
17.
Mater Sci Eng C Mater Biol Appl ; 123: 111972, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812600

RESUMEN

Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts.


Asunto(s)
Osteogénesis , Zeolitas , Regeneración Ósea , Fosfatos de Calcio , Diferenciación Celular , Humanos , Hidroxiapatitas
18.
ACS Appl Bio Mater ; 4(6): 4885-4895, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007037

RESUMEN

The limited knowledge on how biological systems sense and respond to the mechanical properties of metal-organic framework (MOF) thin films is a critical restriction factor for their extensive usage. To bridge this gap, we performed an in vitro study for defining and linking surface characteristics at the interface of the zeolitic imidazolate framework-8 (ZIF8) thin layer to stem cell behavior. First, the physio-mechanical properties of the ZIF8 layer grown on polydopamine (PDA) and tannic acid (TA) layers have been studied. The response of dental pulp stem cells (DPSCs) to different surface states was examined. The results showed that the uniform crystalline microstructure of the ZIF8 on PDA and TA effectively led to the 61- and 388-fold increased surface roughness, 3- and 2.5-fold moderated elastic modulus, almost 3-fold elevated surface free energy, and highly charged surfaces (ζ = -60 mV for TA/ZIF8), respectively. Beyond the inherent bioactivity of the ZIF8 layer, these substrate cues promoted advanced cell adhesion (∼two times) and high proliferation rate. Furthermore, we found a substantial increment in the differentiation efficiency of DPSCs on the ZIF8 layer, in a way that the expression of functional adipocyte (PPARG) and osteoblast (SPP1) markers was, respectively, elevated around 30 000- and 10 000-fold on the TA/ZIF8-coated silicon wafer (SW). Our findings support the impact of fabrication strategy on the biointerface properties of the ZIF8 layer and bring SW/TA/ZIF8 as a robust platform for managing stem cells for biomedical applications.


Asunto(s)
Pulpa Dental/citología , Imidazoles , Estructuras Metalorgánicas , Células Madre/citología , Adolescente , Adulto , Fenómenos Biofísicos , Diferenciación Celular , Células Cultivadas , Niño , Femenino , Humanos , Indoles , Masculino , Polímeros , Taninos , Adulto Joven
19.
Crit Rev Food Sci Nutr ; 61(19): 3160-3196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32715740

RESUMEN

The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.


Asunto(s)
Enzimas Inmovilizadas , Industria de Alimentos , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Tecnología
20.
Int J Nanomedicine ; 15: 10029-10043, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335393

RESUMEN

PURPOSE: Despite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility. RESULTS: In situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer. CONCLUSION: Hence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Regeneración Tisular Dirigida/métodos , Membranas Artificiales , Polipropilenos/química , Polipropilenos/farmacología , Zeolitas/química , Diferenciación Celular/efectos de los fármacos , Indoles/química , Osteogénesis/efectos de los fármacos , Polímeros/química , Células Madre/citología , Células Madre/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...