Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2855, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565539

RESUMEN

Metal carbides are known to contain small carbon units similar to those found in the molecules of methane, acetylene, and allene. However, for numerous binary systems ab initio calculations predict the formation of unusual metal carbides with exotic polycarbon units, [C6] rings, and graphitic carbon sheets at high pressure (HP). Here we report the synthesis and structural characterization of a HP-CaC2 polymorph and a Ca3C7 compound featuring deprotonated polyacene-like and para-poly(indenoindene)-like nanoribbons, respectively. We also demonstrate that carbides with infinite chains of fused [C6] rings can exist even at conditions of deep planetary interiors ( ~ 140 GPa and ~3300 K). Hydrolysis of high-pressure carbides may provide a possible abiotic route to polycyclic aromatic hydrocarbons in Universe.

2.
Chemistry ; 30(29): e202400766, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38483015

RESUMEN

A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.

3.
Nat Commun ; 15(1): 2244, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472167

RESUMEN

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.

4.
Angew Chem Int Ed Engl ; 63(14): e202401421, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38361110

RESUMEN

The first nitridic analog of an amphibole mineral, the quaternary nitridosilicate phosphate Cr5.7Si2.3P8N24 was synthesized under high-pressure high-temperature conditions at 1400 °C and 12 GPa from the binary nitrides Cr2N, Si3N4 and P3N5, using NH4N3 and NH4F as additional nitrogen source and mineralizing agent, respectively. The crystal structure was elucidated by single-crystal X-ray diffraction with microfocused synchrotron radiation (C2/m, a=9.6002(19), b=17.107(3), c=4.8530(10) Å, ß=109.65(3)°). The elemental composition was analyzed by energy dispersive X-ray spectroscopy. The structure consists of vertex-sharing PN4-tetrahedra forming zweier double chains and edge-sharing (Si,Cr)-centered octahedra forming separated ribbons. Atomic resolution scanning transmission electron microscopy shows ordered Si and Cr sites next to a disordered Si/Cr site. Optical spectroscopy indicates a band gap of 2.1 eV. Susceptibility measurements show paramagnetic behavior and support the oxidation state Cr+IV, which is confirmed by EPR. The comprehensive analysis expands the field of Cr-N chemistry and provides access to a nitride analog of one of the most prevalent silicate structures.

5.
JACS Au ; 3(6): 1634-1641, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388691

RESUMEN

The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.

6.
J Appl Crystallogr ; 56(Pt 3): 660-672, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284277

RESUMEN

The mechanism of hydration of calcium sulfate hemihydrate (CaSO4·0.5H2O) to form gypsum (CaSO4·2H2O) was studied by combining scanning 3D X-ray diffraction (s3DXRD) and phase contrast tomography (PCT) to determine in situ the spatial and crystallographic relationship between these two phases. From s3DXRD measurements, the crystallographic structure, orientation and position of the crystalline grains in the sample during the hydration reaction were obtained, while the PCT reconstructions allowed visualization of the 3D shapes of the crystals during the reaction. This multi-scale study unfolds structural and morphological evidence of the dissolution-precipitation process of the gypsum plaster system, providing insights into the reactivity of specific crystallographic facets of the hemihydrate. In this work, epitaxial growth of gypsum crystals on the hemihydrate grains was not observed.

7.
ACS Appl Mater Interfaces ; 15(23): 28166-28174, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37259773

RESUMEN

One major concern toward the performance and stability of halide perovskite-based optoelectronic devices is the formation of metallic lead that promotes nonradiative recombination of charge carriers. The origin of metallic lead formation is being disputed whether it occurs during the perovskite synthesis or only after light, electron, or X-ray beam irradiation or thermal annealing. Here, we show that the quantity of metallic lead detected in perovskite crystals depends on the concentration and composition of the precursor solution. Through a controlled crystallization process, we grew black-colored mixed dimethylammonium (DMA)/methylammonium (MA) lead tribromide crystals. The black color is suggested to be due to the presence of small lead clusters. Despite the unexpected black coloring, the crystals show higher crystallinity and less defect density with respect to the standard yellow-colored DMA/MAPbBr3 crystals, as indicated by X-ray rocking curve and dark current measurements, respectively. While the formation of metallic lead could still be induced by external factors, the precursor solution composition and concentration can facilitate the formation of metallic lead during the crystallization process. Our results indicate that additional research is required to fully understand the perovskite precursor solution chemistry.

8.
IUCrJ ; 10(Pt 4): 397-410, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199503

RESUMEN

Erionite is a non-asbestos fibrous zeolite classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen and is considered today similar to or even more carcinogenic than the six regulated asbestos minerals. Exposure to fibrous erionite has been unequivocally linked to cases of malignant mesothelioma (MM) and this killer fibre is assumed to be directly responsible for more than 50% of all deaths in the population of the villages of Karain and Tuzköy in central Anatolia (Turkey). Erionite usually occurs in bundles of thin fibres and very rarely as single acicular or needle-like fibres. For this reason, a crystal structure of this fibre has not been attempted to date although an accurate characterization of its crystal structure is of paramount importance for our understanding of the toxicity and carcinogenicity. In this work, we report on a combined approach of microscopic (SEM, TEM, electron diffraction), spectroscopic (micro-Raman) and chemical techniques with synchrotron nano-single-crystal diffraction that allowed us to obtain the first reliable ab initio crystal structure of this killer zeolite. The refined structure showed regular T-O distances (in the range 1.61-1.65 Å) and extra-framework content in line with the chemical formula (K2.63Ca1.57Mg0.76Na0.13Ba0.01)[Si28.62Al7.35]O72·28.3H2O. The synchrotron nano-diffraction data combined with three-dimensional electron diffraction (3DED) allowed us to unequivocally rule out the presence of offretite. These results are of paramount importance for understanding the mechanisms by which erionite induces toxic damage and for confirming the physical similarities with asbestos fibres.


Asunto(s)
Amianto , Mesotelioma , Zeolitas , Humanos , Zeolitas/análisis , Mesotelioma/epidemiología , Turquía/epidemiología , Exposición a Riesgos Ambientales , Carcinógenos
9.
Nat Chem ; 15(5): 641-646, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36879075

RESUMEN

The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N5]- anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N6]4-. Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N6]4- is planar and proposed to be aromatic.

10.
J Phys Chem Lett ; 14(8): 2178-2186, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808992

RESUMEN

Tin-based metal halide perovskites with a composition of ASnX3 (where A= MA or FA and X = I or Br) have been investigated by means of X-ray total scattering techniques coupled to pair distribution function (PDF) analysis. These studies revealed that that none of the four perovskites has a cubic symmetry at the local scale and that a degree of increasing distortion is always present, in particular when the cation size is increased, i.e., from MA to FA, and the hardness of the anion is increased, i.e., from Br- to I-. Electronic structure calculations provided good agreement with experimental band gaps for the four perovskites when local dynamical distortions were included in the calculations. The averaged structure obtained from molecular dynamics simulations was consistent with experimental local structures determined via X-ray PDF, thus highlighting the robustness of computational modeling and strengthening the correlation between experimental and computational results.

11.
Chemistry ; 28(62): e202203123, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36323532

RESUMEN

Invited for the cover of this issue are Dominique Laniel (University of Edinburgh), Florian Trybel (University of Linköping), and their colleagues. The image depicts a bridge built of the newly discovered δ-P3 N5 solid with the structure featuring PN6 units, a previously missing connection between the carbon group elements nitrides and chalcogens nitrides. Read the full text of the article at 10.1002/chem.202201998.

12.
ACS Omega ; 7(37): 32949-32958, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157745

RESUMEN

A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).

13.
Chemistry ; 28(62): e202201998, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35997073

RESUMEN

Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3 N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0 =322 GPa for δ-P3 N5 and 339 GPa for PN2 . Upon decompression below 7 GPa, δ-P3 N5 undergoes a transformation into a novel α'-P3 N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α'-P3 N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.

14.
Angew Chem Int Ed Engl ; 61(34): e202207469, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726633

RESUMEN

Two novel yttrium nitrides, YN6 and Y2 N11 , were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser-heated diamond anvil cell. High-pressure synchrotron single-crystal X-ray diffraction revealed that the crystal structures of YN6 and Y2 N11 feature a unique organization of nitrogen atoms-a previously unknown anionic N18 macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN6 and Y2 N11 compounds, show an anion-driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y2 N11 is different from that previously found in Hf2 N11 and because N18 macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides.

15.
Nature ; 605(7909): 274-278, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35546194

RESUMEN

Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions1,2. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell3, producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.

16.
Angew Chem Int Ed Engl ; 61(4): e202114902, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34854523

RESUMEN

We present the first nitridic analogs of micas, namely AESi3 P4 N10 (NH)2 (AE=Mg, Mg0.94 Ca0.06 , Ca, Sr), which were synthesized under high-pressure high-temperature conditions at 1400 °C and 8 GPa from the refractory nitrides P3 N5 and Si3 N4 , the respective alkaline earth amides, implementing NH4 F as a mineralizer. The crystal structure was elucidated by single-crystal diffraction with microfocused synchrotron radiation, energy-dispersive X-ray spectroscopic (EDX) mapping with atomic resolution, powder X-ray diffraction, and solid-state NMR. The structures consist of typical tetrahedra-octahedra-tetrahedra (T-O-T) layers with P occupying T and Si occupying O layers, realizing the rare motif of sixfold coordinated silicon atoms in nitrides. The presence of H, as an imide group forming the SiN4 (NH)2 octahedra, is confirmed by SCXRD, MAS-NMR, and IR spectroscopy. Eu2+ -doped samples show tunable narrow-band emission from deep blue to cyan (451-492 nm).

17.
Adv Mater ; 34(7): e2106160, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34856033

RESUMEN

The solvent acidolysis crystallization technique is utilized to grow mixed dimethylammonium/methylammonium lead tribromide (DMA/MAPbBr3 ) crystals reaching the highest dimethylammonium incorporation of 44% while maintaining the 3D cubic perovskite phase. These mixed perovskite crystals show suppression of the orthorhombic phase and a lower tetragonal-to-cubic phase-transition temperature compared to MAPbBr3 . A distinct behavior is observed in the temperature-dependent photoluminescence properties of MAPbBr3 and mixed DMA/MAPbBr3 crystals due to the different organic cation dynamics governing the phase transition(s). Furthermore, lateral photodetectors based on these crystals show that, at room temperature, the mixed crystals possess higher detectivity compared to MAPbBr3 crystals caused by structural compression and reduced surface trap density. Remarkably, the mixed-crystal devices exhibit large enhancement in their detectivity below the phase-transition temperature (at 200 K), while for the MAPbBr3 devices only insignificant changes are observed. The high detectivity of the mixed crystals makes them attractive for visible-light communication and for space applications. The results highlight the importance of the synthetic technique for compositional engineering of halide perovskites that governs their structural and optoelectronic properties.

18.
J Synchrotron Radiat ; 28(Pt 5): 1377-1385, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475286

RESUMEN

The high levels of flux available at a fourth-generation synchrotron are shown to have significant beam heating effects for high-energy X-rays and radiation hard samples, leading to temperature increases of over 400 K with a monochromatic beam. These effects have been investigated at the ID11 beamline at the recently upgraded ESRF Extremely Brilliant Source, using thermal lattice expansion to perform in situ measurements of beam heating. Results showed significant increases in temperature for metal and ceria samples, which are compared with a lumped thermodynamic model, providing a tool for estimating beam heating effects. These temperature increases may have a drastic effect on samples and measurements, such as the rapid recrystallization of a copper wire shown here. These results demonstrate the importance of beam heating and provide information needed to consider, predict and mitigate these effects.

19.
IUCrJ ; 8(Pt 1): 76-86, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33520244

RESUMEN

The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.

20.
J Appl Crystallogr ; 52(Pt 6): 1397-1408, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31798362

RESUMEN

The ferrierite crystal structure has often been subject to discussion because of the possible lowering of symmetry from the space group Immm. It mainly occurs in nature with a fibrous crystal habit, and because of the existence of line/planar defects in the framework, texture and preferred orientation effects it has been difficult to obtain an exact crystallographic model based only on the results from powder diffraction data. Therefore, nano-single-crystal diffraction and tomography data have been combined in order to improve the refinement with a meaningful model. High-quality single-crystal data, providing reliable structural information, and tomography images have been used as input for a Rietveld refinement which took into account a phenomenological description of stacking disorder and the analytical description of the preferred orientation, by means of spherical harmonics for strong texture effects. This is one of the first examples of application of synchrotron nano-diffraction for the structure solution of fibrous minerals of micrometre to nanometre size. The high quality of the crystals allowed collection of single-crystal X-ray diffraction data of up to 0.6 Šresolution, leading to an unambiguous solution and precise anisotropic refinement. Nano-single-crystal diffraction and phase contrast tomography data were collected at ID11 and the high-resolution powder diffraction patterns at ID22 of the European Synchrotron Radiation Facility. This detailed crystallographic characterization provides a basis for understanding the potential of ferrierite for toxicity and carcinogenicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...