Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(25): 17017-17027, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37293474

RESUMEN

Avobenzone and octocrylene are popular sunscreen active ingredients. Experiments that probe the stability of avobenzone in binary mixtures with octocrylene are presented, together with the synthesis of a class of novel composite sunscreens that were designed by covalently linking avobenzone and octocrylene groups. Spectroscopy, both steady-state and time-resolved, of the fused molecules was performed to investigate the stability of the new molecules and their potential function as ultraviolet filters. Computational results are detailed for truncated versions of a subset of the molecules to reveal the energy states underlying the absorption processes of this new class of sunscreen. The results indicate that the combination of elements of the two sunscreen molecules into one molecule creates a derivative with good stability to UV light in ethanol and in which the main degradation pathway of the avobenzone component in acetonitrile is reduced. Derivatives containing p-chloro substituents are particularly stable to UV light.

2.
Phys Chem Chem Phys ; 23(42): 24439-24448, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694312

RESUMEN

Avobenzone is an ultraviolet (UV) filter that is often included in sunscreen formulations despite its lack of photostability. Its inclusion is necessary due to few existing alternatives for photoprotection in the UVA region (320-400 nm). To better understand and predict the photostability of avobenzone, ultrafast transient electronic absorption spectroscopy (TEAS) has been used to study the effects of solvent (including emollients), concentration and skin surface temperature on its excited-state relaxation mechanism, following photoexcitation with UVA radiation (∼350 nm). Subtle differences between the excited-state lifetimes were found between the systems, but the TEAS spectral features were qualitatively the same for all solution and temperature combinations. Alongside TEAS measurements, UV filter/emollient blends containing avobenzone were irradiated using simulated solar light and their degradation tracked using steady-state UV-visible spectroscopy. Sun protection factor (SPF) and UVA protection factor (UVA-PF) assessments were also carried out on representative oil phases (higher concentration blends), which could be used to formulate oil-in-water sunscreens. It was found that there was an apparent concentration dependence on the long-term photoprotective efficacy of these mixtures, which could be linked to the ultrafast photodynamics by the presence of a ground-state bleach offset. This combination of techniques shows potential for correlating long-term behaviours (minutes to hours) of avobenzone with its ultrafast photophysics (femtoseconds to nanoseconds), bridging the gap between fundamental photophysics/photochemistry and commercial sunscreen design.


Asunto(s)
Propiofenonas/química , Protectores Solares/química , Composición de Medicamentos , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Espectrofotometría Ultravioleta
3.
Phys Chem Chem Phys ; 22(27): 15509-15519, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32602867

RESUMEN

Homosalate (HMS) is a salicylate molecule that is commonly included within commercial sunscreen formulations to provide protection from the adverse effects of ultraviolet (UV) radiation exposure. In the present work, the mechanisms by which HMS provides UV photoprotection are unravelled, using a multi-pronged approach involving a combination of time-resolved ultrafast laser spectroscopy in the gas-phase and in solution, laser-induced fluorescence, steady-state absorption spectroscopy, and computational methods. The unique combination of these techniques allow us to show that the enol tautomer of HMS undergoes ultrafast excited state intramolecular proton transfer (ESIPT) upon photoexcitation in the UVB (290-320 nm) region; once in the keto tautomer, the excess energy is predominantly dissipated non-radiatively. Sharp transitions are observed in the LIF spectrum at close-to-origin excitation energies, which points towards the potential presence of a second conformer that does not undergo ESIPT. These studies demonstrate that, overall, HMS exhibits mostly favourable photophysical characteristics of a UV filter for inclusion in sunscreen formulations.


Asunto(s)
Salicilatos/química , Rayos Ultravioleta , Estructura Molecular , Procesos Fotoquímicos
4.
Nat Commun ; 10(1): 4748, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628301

RESUMEN

In plants, sinapate esters offer crucial protection from the deleterious effects of ultraviolet radiation exposure. These esters are a promising foundation for designing UV filters, particularly for the UVA region (400 - 315 nm), where adequate photoprotection is currently lacking. Whilst sinapate esters are highly photostable due to a cis-trans (and vice versa) photoisomerization, the cis-isomer can display increased genotoxicity; an alarming concern for current cinnamate ester-based human sunscreens. To eliminate this potentiality, here we synthesize a sinapate ester with equivalent cis- and trans-isomers. We investigate its photostability through innovative ultrafast spectroscopy on a skin mimic, thus modelling the as close to true environment of sunscreen formulas. These studies are complemented by assessing endocrine disruption activity and antioxidant potential. We contest, from our results, that symmetrically functionalized sinapate esters may show exceptional promise as nature-inspired UV filters in next generation sunscreen formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...