Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Imaging Biol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287887

RESUMEN

Bioimaging such as magnetic resonance is used to monitor atherosclerotic plaques consisting of foam cells, which are derived from macrophages that have ingested oxidized low-density lipoprotein (oxLDL). However, the current bioimaging techniques are not highly specific and sensitive in detecting foam cells, calling for the development of higher precision foam cell detection probes. Here, we investigated the utility of iodine-125-labeled oxLDL (125I-oxLDL) as a prototype radiotracer in the radioimaging of foam cells infiltrating atherosclerotic plaques. Mouse bone marrow-derived macrophages (BMDMs) were used to analyze oxLDL uptake. Atherosclerosis mouse model was injected with 125I-oxLDL and DiI-labeled oxLDL (DiI-oxLDL). Accumulation of 125I-oxLDL and DiI-oxLDL in foam cells infiltrating atherosclerotic plaques was examined using Oil Red O (ORO) staining, autoradiography, and fluorescent immunohistochemistry. BMDMs phagocytosed oxLDL/125I-oxLDL via CD36, but not LDL/125I-LDL. The radioactive signal from 125I-oxLDL phagocytosed by the BMDMs could be detected for at least 3 days. In atherosclerosis mouse model, atherosclerotic plaques formed in the aortic arches and valves. The radioactive signal of the injected 125I-oxLDL was detected in atherosclerotic plaques of the aortic arch, and its intensity was positively correlated with the lesion size. Furthermore, the DiI-oxLDL fluorescent signals were detected in foam cells accumulating in atherosclerotic plaques. Thus, we found that 125I-oxLDL can be used as a radiotracer in the radioimaging of foam cells in atherosclerotic plaques by autoradiography, suggesting its potential future applications in bioimaging methods such as single-photon emission computed tomography.

2.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825533

RESUMEN

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Asunto(s)
Quimiocina CCL2 , Dieta Alta en Grasa , Fosfolipasas A2 Grupo IV , Células Estrelladas Hepáticas , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Regulación hacia Arriba , Animales , Dieta Alta en Grasa/efectos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Hígado/patología , Regulación hacia Arriba/efectos de los fármacos , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfolipasas A2 Grupo IV/genética , Fosfolipasas A2 Grupo IV/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Ratones Noqueados , Colágeno/metabolismo , Colágeno/biosíntesis , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Cultivadas
3.
Polymers (Basel) ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794593

RESUMEN

In this study, we investigated the impact of polyvinyl alcohol (PVA) incorporation on the optical properties and oxygen detection performance of a titanium dioxide/methylene blue (TiO2/MB) nanocomposite colorimetric indicator for packaging applications. The nanocomposite was synthesized via mechanical milling of TiO2 nanoparticles with MB and citric acid. PVA, at varying concentrations (0, 3, 9, and 14 wt%), was introduced during the wet milling process to produce a homogeneous composite film. Spin coating was employed to fabricate TiO2/MB nanocomposite films for oxygen detection evaluation. The influence of PVA loading on the films' chemical functionalities and surface morphologies was assessed using Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FE-SEM). The indicator's activation process, involving a color change between bleached and colored states, and its recovery time were monitored via optical imaging and UV-VIS-NIR spectrophotometry. The results revealed that a PVA content of 9 wt% yielded well-defined films with enhanced stability of the TiO2/MB nanocomposite's oxygen detection performance.

4.
Genes Cells ; 29(7): 589-598, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715219

RESUMEN

Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.


Asunto(s)
Arsenitos , Calcineurina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Calcineurina/metabolismo , Calcineurina/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Arsenitos/toxicidad , Arsenitos/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal , Proteínas de Unión al ADN , Proteínas Musculares
5.
Anticancer Res ; 44(2): 489-495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307564

RESUMEN

BACKGROUND/AIM: Individuals with Down syndrome (DS), attributed to triplication of human chromosome 21 (Hsa21), exhibit a reduced incidence of solid tumors. However, the prevalence of glioblastoma among individuals with DS remains a contentious issue in epidemiological studies. Therefore, this study examined the gliomagenicity in Ts1Cje mice, a murine model of DS. MATERIALS AND METHODS: We employed the Sleeping Beauty transposon system for the integration of human oncogenes into cells of the subventricular zone of neonatal mice. RESULTS: Notably, Sleeping Beauty-mediated de novo murine gliomagenesis was significantly suppressed in Ts1Cje mice compared to wild-type mice. In glioblastomas of Ts1je mice, we observed an augmented presence of M1-polarized tumor-associated macrophages and microglia, known for their anti-tumor efficacy in the early stage of tumor development. CONCLUSION: Our findings in a mouse model of DS offer novel perspectives on the diminished gliomagenicity observed in individuals with DS.


Asunto(s)
Síndrome de Down , Ratones , Animales , Humanos , Síndrome de Down/genética , Síndrome de Down/patología , Modelos Animales de Enfermedad
6.
Biol Pharm Bull ; 46(9): 1169-1175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661395

RESUMEN

Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.


Asunto(s)
Disfunción Cognitiva , Síndrome de Down , Adulto , Humanos , Femenino , Síndrome de Down/genética , Cobre , Envejecimiento , Disfunción Cognitiva/genética , Aceleración
7.
Biol Pharm Bull ; 46(3): 488-493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858578

RESUMEN

Hepatic fibrosis, a primary feature of non-alcoholic steatohepatitis (NASH), develops with inflammation and subsequent activation of hepatic stellate cells (HSCs), the main extracellular matrix-producing cells. Currently, no approved pharmacotherapy is available to treat hepatic fibrosis, even under dietary intervention. The activation of cultured HSCs has been shown to be attenuated by pharmacological inhibition of group IVA phospholipase A2 (IVA-PLA2), an enzyme initiating the generation of lipid proinflammatory mediators. We examined the potential utility of IVA-PLA2 of HSCs as a therapeutic target for hepatic fibrosis in NASH under dietary modification using collagen-producing cell-specific IVA-PLA2-conditional knockout mice fed a high-fat diet and then returned to a normal one. Apparent hepatic fibrosis and the accumulation of hepatic lipid droplets developed in the IVA-PLA2-conditional knockout mice on a high-fat diet for nine weeks to a similar degree as in control mice. Most of the lipid droplets disappeared five weeks after switching the diet back to a normal one in both genetic mice. In contrast, the hepatic fibrosis in control mice still progressed even after changing back to a normal diet. However, deficiency of IVA-PLA2 in collagen-producing cells alleviated the aggravated hepatic fibrosis under dietary modification. Our results revealed that the protective effects of an HSC-specific IVA-PLA2 deficiency on fibrogenesis appear after switching the diet from a high-fat one back to a normal one, supporting the promising beneficial effects of the inhibition of IVA-PLA2 on progressive hepatic fibrosis under dietary intervention in NASH treatment.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Cirrosis Hepática , Colágeno , Ratones Noqueados , Fosfolipasas A2
8.
Biol Pharm Bull ; 46(2): 320-333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724960

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by dementia. The most characteristic pathological changes in AD brain include extracellular amyloid-ß (Aß) accumulation and neuronal loss. Particularly, cholinergic neurons in the nucleus basalis of Meynert are some of the first neuronal groups to degenerate; accumulating evidence suggests that Aß oligomers are the primary form of neurotoxicity. Bacopa monniera is a traditional Indian memory enhancer whose extract has shown neuroprotective and Aß-reducing effects. In this study, we explored the low molecular weight compounds from B. monniera extracts with an affinity to Aß aggregates, including its oligomers, using Aß oligomer-conjugated beads and identified plantainoside B. Plantainoside B exhibited evident neuroprotective effects by preventing Aß attachment on the cell surface of human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. Moreover, it attenuated memory impairment in mice that received intrahippocampal Aß injections. Furthermore, radioisotope experiments revealed that plantainoside B has affinity to Aß aggregates including its oligomers and brain tissue from a mouse model of Aß pathology. In addition, plantainoside B could delay the Aß aggregation rate. Accordingly, plantainoside B may exert neuroprotective effects by binding to Aß oligomers, thus interrupting the binding of Aß oligomers to the cell surface. This suggests its potential application as a theranostics in AD, simultaneously diagnostic and therapeutic drugs.


Asunto(s)
Enfermedad de Alzheimer , Bacopa , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Humanos , Animales , Bacopa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico
9.
Life (Basel) ; 13(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676170

RESUMEN

The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.

10.
J Clin Biochem Nutr ; 71(1): 16-21, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903608

RESUMEN

Individuals with Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), show numerous characteristic symptoms, such as intellectual disability, an impaired cognitive function, and accelerated aging-like phenotypes. Enhanced oxidative stress is assumed to be implicated as a mechanism underlying many of these symptoms of DS. Some genes coded in Hsa21, such as App, Sod1, and Ets2, are suggested as being involved in the exacerbation of oxidative stress. In addition, enhanced oxidative stress has been recently shown to be caused by dyshomeostasis of the redox-active bio-metal copper in the brain of a mouse model of DS. This review aims to summarize the current knowledge on enhanced oxidative stress in DS and suggest a possible molecular mechanism underlying the cognitive impairment of DS mediated by enhanced oxidative stress.

11.
Life Sci ; 294: 120355, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35093339

RESUMEN

AIM: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, inflammatory responses and fibrosis. Our previous studies provided evidence that group IVA phospholipase A2 (IVA-PLA2), a key PLA2 isozyme in the arachidonic acid cascade, is involved in the development of NASH. However, which types of cells are critical for the IVA-PLA2-dependent onset and progression of NASH is unclear. We elucidated the effects of the cell-type-specific deficiency of IVA-PLA2 in mice on the development of NASH. MAIN METHODS: Cell-type-specific IVA-PLA2-conditional knockout (cKO) mice and littermate controls were fed a choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine as a NASH model. The degree of hepatic fibrosis was evaluated by staining with picric acid-Sirius red, and the number of activated hepatic stellate cells was determined by immunoblotting and immunostaining for α-smooth muscle actin. Sinusoidal capillarization was analyzed by scanning electron microscopy. KEY FINDINGS: The deposition of collagen and number of activated hepatic stellate cells were markedly reduced in endothelial cell/liver sinusoidal endothelial cell (EC/LSEC)-specific IVA-PLA2 cKO mice but not in hepatocyte-, monocyte/macrophage-, or hepatic stellate cell-specific IVA-PLA2 cKO mice. In addition, EC/LSEC-specific IVA-PLA2-deficient mice showed more fenestrae than control mice fed a CDAHFD, indicating suppression of sinusoidal capillarization. SIGNIFICANCE: These results suggest that ECs/LSECs contribute to the IVA-PLA2-dependent onset and/or progression of NASH. Endothelial IVA-PLA2 is a promising factor for promoting sinusoidal capillarization and the ensuing HSC activation and fibrosis; thus IVA-PLA2 in ECs/LSECs is a potential therapeutic target for NASH.


Asunto(s)
Capilares/patología , Células Endoteliales/patología , Fosfolipasas A2 Grupo IV/fisiología , Cirrosis Hepática/patología , Neovascularización Patológica/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Capilares/enzimología , Células Endoteliales/enzimología , Cirrosis Hepática/enzimología , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/enzimología
13.
Genes (Basel) ; 12(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680993

RESUMEN

Down syndrome (DS), also known as trisomy 21, is the most frequent genetic cause of intellectual disability. Although the mechanism remains unknown, delayed brain development is assumed to be involved in DS intellectual disability. Analyses with human with DS and mouse models have shown that defects in embryonic cortical neurogenesis may lead to delayed brain development. Cre-loxP-mediated chromosomal engineering has allowed the generation of a variety of mouse models carrying various partial Mmu16 segments. These mouse models are useful for determining genotype-phenotype correlations and identifying dosage-sensitive genes involved in the impaired neurogenesis. In this review, we summarize several candidate genes and pathways that have been linked to defective cortical neurogenesis in DS.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Down/genética , Desarrollo Embrionario/genética , Neurogénesis/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Corteza Cerebelosa/crecimiento & desarrollo , Modelos Animales de Enfermedad , Síndrome de Down/patología , Genotipo , Humanos , Ratones
14.
Heliyon ; 7(3): e06588, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33869838

RESUMEN

The Japanese government decided to implement environmental remediation after the Fukushima Daiichi Nuclear Power Plant (termed "1F" in Japan) accident on 11th March 2011. As the initial additional annual dose target was set to be 1 mSv or less as a long-term goal, we examined the decision-making process undertaken by the then leaders, particularly the Minister of the Ministry of the Environment (MOE) who was responsible for the final decision. We found that technically based assessment of dose targets, health effects and risk-based approaches justified by scientific experts were not communicated to the then Minister and officials of the MOE before the remediation strategy was decided. We defined how such a decision was made based on leadership theories such as the Role Theory and the Cognitive Resources Theory. Academic leaders could have examined the Windscale accident (UK, 1957), which could be considered as the closest analogue (at least in terms of radionuclide releases) to the 1F accident. Environmental remediation could have been planned and implemented more effectively whilst still maintaining the highest possible safety standards and balancing the environmental and economic burden. Appropriate scientific input should have been provided by academic leaders to political and administrative leaders and such scientific justification should have been disclosed to the general public (especially the residents of Fukushima Prefecture) so that the general public could have developed greater trust in their leaders and have more readily accepted the decisions made.

16.
Yakugaku Zasshi ; 141(3): 369-373, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33642505

RESUMEN

Developmental retardation of the brain with reduced cortical neurogenesis is observed in Ts1Cje mice, a model of Down syndrome (DS) as it is in people with DS; however, the mechanisms and the responsible gene(s) remain unknown. The goal of the present study is to establish a therapeutic approach for treating the delayed brain development in DS. To achieve this, we have utilized multiple OMICS analyses, including proteomics and transcriptomics, to uncover the molecular alterations in the brains of DS model mice. Furthermore, we have elucidated that a transcriptional factor, the Erg gene, which is coded in the trisomic region, contributed to reduced cortical neurogenesis in the embryo of a DS mouse model by a molecular genetic technique, the "in vivo gene subtraction method". In the current review, I will introduce our recent work, the identification of the gene responsible for delayed brain development in the DS mouse model and will discuss the possibility that blood vessel dysfunction may be associated with reduced embryonic neurogenesis in DS.


Asunto(s)
Vasos Sanguíneos/fisiopatología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/embriología , Síndrome de Down/embriología , Síndrome de Down/genética , Neurogénesis/genética , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Síndrome de Down/patología , Ratones , Proteínas Oncogénicas , Regulador Transcripcional ERG , Trisomía/genética
17.
Biochem Biophys Res Commun ; 535: 87-92, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33348080

RESUMEN

Down syndrome (DS, Trisomy 21) is the most common genetic cause of delayed fetal brain development and postnatal intellectual disability. Although delayed fetal brain development might be involved in intellectual disability, no evidence of an association between these abnormal phenotypes has been shown. To identify molecules differentially expressed in both the prenatal forebrain and adult hippocampus of Ts1Cje mice, a mouse model of DS, we employed a transcriptomic analysis. In the present study, we conducted transcriptomic profiling of the hippocampus of adult Ts1Cje mice and compared the results with the previously obtained transcriptomic profile of the prenatal forebrain at embryonic day 14.5. Results showed that the Tbx1 mRNA expression was decreased at both life stages. In addition, the decreased expression of Tbx1 mRNA was confirmed in other DS mouse models, Dp(16)1Yey/+ and Ts1Rhr mice, which carry longer and shorter trisomic regions, respectively. Taken together, these findings suggest that Tbx1 may link the delayed fetal brain development and intellectual disability in DS.


Asunto(s)
Encéfalo/embriología , Síndrome de Down/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Hipocampo/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
18.
Mol Brain ; 13(1): 140, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059734

RESUMEN

α2-Antiplasmin (α2AP), a principal physiological plasmin inhibitor, is mainly produced by the liver and kidneys, but it is also expressed in several parts of the brain, including the hippocampus and cerebral cortex. Our previous study demonstrated that α2AP knockout mice exhibit spatial memory impairment in comparison to wild-type mice, suggesting that α2AP is necessary for the fetal and/or neonatal development of the neural network for spatial memory. However, it is still unclear whether α2AP plays a role in the memory process. The present study demonstrated that adult hippocampal neurogenesis and remote spatial memory were enhanced by the injection of an anti-α2AP neutralizing antibody in WT mice, while the injection of α2AP reduced hippocampal neurogenesis and impaired remote spatial memory, suggesting that α2AP is a negative regulator in memory processing. The present study also found that the levels of α2AP in the brains of old mice were higher than those in young mice, and a negative correlation between the α2AP level and spatial working memory. In addition, aging-dependent brain oxidative stress and hippocampal inflammation were attenuated by α2AP deficiency. Thus, an age-related increase in α2AP might cause cognitive decline accompanied by brain oxidative stress and neuroinflammation. Taken together, our findings suggest that α2AP is a key regulator of the spatial memory process, and that it may represent a promising target to effectively regulate healthy brain aging.


Asunto(s)
Envejecimiento/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Memoria Espacial/fisiología , alfa 2-Antiplasmina/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Hipocampo/fisiopatología , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Neurogénesis , Estrés Oxidativo , alfa 2-Antiplasmina/deficiencia
19.
Sci Rep ; 10(1): 6199, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277100

RESUMEN

Novel amorphous iron hydrides (AIHs) are synthesized for the first time under ambient conditions by employing novel "quiescent reaction", without stirring for mixing solutions, during a conventional aqueous reduction-precipitation process. The kind and morphology of AIHs are dependent on the processing condition, where two types are found, with one form consisting of a tangle of uniform nanowires and the other being granular in nature. Both AIHs undergo transformation to crystalline α-Fe by heat treatment at 600 °C. The nanowire AIH exhibits the hydrogen content of 0.10 wt%, while the granular AIH of 0.22 wt%. Their magnetic and thermal properties are accordingly different, and the non-diffusive hydrogen contributes to stability of AIHs. It is strongly suggested that, by use of quiescent reaction, iron-hydrogen clusters are formed and preserved at an early stage of precipitation reaction, and subsequently aggregated into novel AIHs, preventing α-Fe crystallization. Hence, the AIHs would be categorized as metastable hydrides stabilized with iron-hydrogen clusters. In addition, newly discovered quiescent reaction in aqueous solution, from which unprecedented AIHs are derived, sheds new light on fundamental and essential aqueous reaction.

20.
Brain Pathol ; 30(1): 75-91, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31206867

RESUMEN

Some mouse models of Down syndrome (DS), including Ts1Cje mice, exhibit impaired prenatal neurogenesis with yet unknown molecular mechanism. To gain insights into the impaired neurogenesis, a transcriptomic and flow cytometry analysis of E14.5 Ts1Cje embryo brain was performed. Our analysis revealed that the neutrophil and monocyte ratios in the CD45-positive hematopoietic cells were relatively increased, in agreement with the altered expression of inflammation/immune-related genes, in Ts1Cje embryonic brain, whereas the relative number of brain macrophages was decreased in comparison to wild-type mice. Similar upregulation of inflammation-associated mRNAs was observed in other DS mouse models, with variable trisomic region lengths. We used genetic manipulation to assess the contribution of Erg, a trisomic gene in these DS models, known to regulation hemato-immune cells. The perturbed proportions of immune cells in Ts1Cje mouse brain were restored in Ts1Cje-Erg+/+/Mld2 mice, which are disomic for functional Erg but otherwise trisomic on a Ts1Cje background. Moreover, the embryonic neurogenesis defects observed in Ts1Cje cortex were reduced in Ts1Cje-Erg+/+/Mld2 embryos. Our findings suggest that Erg gene triplication contributes to the dysregulation of the homeostatic proportion of the populations of immune cells in the embryonic brain and decreased prenatal cortical neurogenesis in the prenatal brain with DS.


Asunto(s)
Síndrome de Down/genética , Neurogénesis/genética , Regulador Transcripcional ERG/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/inmunología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Embarazo , Regulador Transcripcional ERG/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA