Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 25(11): 105425, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388977

RESUMEN

CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription activation and directly bind to RtcR CARF. RtcAB catalytic activity is not required for complex formation with CARF, but is essential yet not sufficient for RtcRAB-dependent transcription activation, implying the need for an additional RNA repair-dependent activating signal. This signal differs from oligoadenylates, a known ligand of CARF domains, and instead appears to originate from the translation apparatus: RtcB repairs a tmRNA that rescues stalled ribosomes and increases translation elongation speed. Taken together, our data provide evidence for an expanded range for CARF domain signaling, including the first evidence of its control via in trans protein-protein interactions, and a feed-forward mechanism to regulate RNA repair required for a functioning translation apparatus.

2.
Adv Sci (Weinh) ; 9(4): e2103669, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761556

RESUMEN

Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Antibacterianos/metabolismo , Proteínas Bacterianas/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo
3.
Elife ; 92020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039758

RESUMEN

Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.


Bacteria and viruses have long been fighting amongst themselves. Bacteriophages are a type of virus that invade bacteria; their name literally means 'bacteria eater'. The bacteriophage T7, for example, infects the common bacteria known as Escherichia coli. Once inside, the virus hijacks the bacterium's cellular machinery, using it to replicate its own genetic material and make more copies of the virus so it can spread. At the same time, the bacteria have found ways to try and defend themselves, which in turn has led some bacteriophages to develop countermeasures to overcome those defences. Many bacteria, for example, have restriction enzymes which recognise certain sections of the bacteriophage DNA and cut it into fragments. However, the T7 bacteriophage has one well-known protein called Ocr which inhibits restriction enzymes. Ocr does this by mimicking DNA, which led Ye et al. to wonder if it could also interrupt other vital processes in a bacterial cell that involve DNA. Transcription is the first step in a coordinated process that turns the genetic information stored in a cell's DNA into useful proteins. An enzyme called RNA polymerase decodes the DNA sequence into a go-between molecule called messenger RNA, and it was here that Ye et al. thought Ocr might jump in to interfere. To begin, Ye et al. examined the structure of Ocr when it binds to RNA polymerase using an imaging technique called cryo-electron microscopy. Ocr has been well-studied before, its structure previously described, but not when attached to RNA polymerase. The analysis showed that Ocr gets in the way of specific molecules, called sigma factors, that show RNA polymerase where to start transcription. Ocr binds to RNA polymerase in exactly the same pocket as part of sigma factors do, which is also the place where DNA must be to be decoded to make messenger RNA. Ye et al. then performed experiments to show Ocr interfering with binding to RNA polymerase did indeed disrupt transcription. This means Ocr is quite versatile as it interferes with the RNA polymerase of the bacterial host and its restriction enzymes. Ocr's strategy of mimicking DNA to interrupt transcription could be adopted as an approach to develop new antibiotics to stop bacterial infections. DNA transcription is an essential cellular process ­ without it, no cell can replicate and survive ­ and RNA polymerase is already a validated target for drugs. Following Ocr's lead could provide a new way to stop infections, if the right drug can be designed to fit.


Asunto(s)
Transcripción Genética/genética , Proteínas Virales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Imitación Molecular/genética , Unión Proteica , Factor sigma/química , Factor sigma/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Biomolecules ; 10(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106553

RESUMEN

Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.


Asunto(s)
Proteínas AAA/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas AAA/química , Proteínas AAA/genética , Adenosina Trifosfato/metabolismo , Bacterias/química , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , ARN Polimerasa Sigma 54/química , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
J Mol Biol ; 431(20): 3960-3974, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31029702

RESUMEN

Cellular RNA polymerase is a multi-subunit macromolecular assembly responsible for gene transcription, a highly regulated process conserved from bacteria to humans. In bacteria, sigma factors are employed to mediate gene-specific expression in response to a variety of environmental conditions. The major variant σ factor, σ54, has a specific role in stress responses. Unlike σ70-dependent transcription, which often can spontaneously proceed to initiation, σ54-dependent transcription requires an additional ATPase protein for activation. As a result, structures of a number of distinct functional states during the dynamic process of transcription initiation have been captured using the σ54 system with both x-ray crystallography and cryo electron microscopy, furthering our understanding of σ54-dependent transcription initiation and DNA opening. Comparisons with σ70 and eukaryotic polymerases reveal unique and common features during transcription initiation.


Asunto(s)
Bacterias/enzimología , Bacterias/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Iniciación de la Transcripción Genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , ARN Polimerasa Sigma 54/química , ARN Polimerasa Sigma 54/genética
6.
Mol Cell ; 70(6): 1111-1120.e3, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932903

RESUMEN

Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Iniciación de la Transcripción Genética/fisiología , Bacterias/genética , Microscopía por Crioelectrón/métodos , ADN , ADN Bacteriano/genética , Escherichia coli/genética , Modelos Moleculares , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Factor sigma/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética
7.
Mol Plant Microbe Interact ; 30(8): 656-665, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28488468

RESUMEN

The plant pathogen Pseudomonas syringae pv. tomato DC3000 uses a type III secretion system (T3SS) to transfer effector proteins into the host. The expression of T3SS proteins is controlled by the HrpL σ factor. Transcription of hrpL is σ54-dependent and bacterial enhancer-binding proteins HrpR and HrpS coactivate the hrpL promoter. The HrpV protein imposes negative control upon HrpR and HrpS through direct interaction with HrpS. HrpG interacts with HrpV and relieves such negative control. The sequence alignments across Hrp group I-type plant pathogens revealed conserved HrpV and HrpG amino acids. To establish structure-function relationships in HrpV and HrpG, either truncated or alanine substitution mutants were constructed. Key functional residues in HrpV and HrpG are found within their C-terminal regions. In HrpG, L101 and L105 are indispensable for the ability of HrpG to directly interact with HrpV and suppress HrpV-dependent negative regulation of HrpR and HrpS. In HrpV, L108 and G110 are major determinants for interactions with HrpS and HrpG. We propose that mutually exclusive binding of HrpS and HrpG to the same binding site of HrpV governs a transition from negative control to activation of the HrpRS complex leading to HrpL expression and pathogenicity of P. syringae.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pseudomonas syringae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Mutación/genética , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , ARN de Planta/metabolismo
8.
Microb Cell ; 4(4): 137-139, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28435841

RESUMEN

Microbes are responsible for over 10% of the global yield losses in staple crops such as wheat, rice, and maize. Understanding the decision-making strategies that enable bacterial plant pathogens to evade the host immune system and cause disease is essential for managing their ever growing threat to food security. Many utilise the needle-like type III secretion system (T3SS) to suppress plant immunity, by injecting effector proteins that inhibit eukaryotic signalling pathways into the host cell cytoplasm. Plants can in turn evolve resistance to specific pathogens via recognition and blocking of the T3SS effectors, so leading to an ongoing co-evolutionary 'arms race' between pathogen and host pairs. The extracytoplasmic function sigma factor HrpL co-ordinates the expression of the T3SS regulon in the leaf-dwelling Pseudomonas syringae and similar pathogens. Recently, we showed that association of HrpL with a target promoter directly adjacent to the hrpL gene imposes negative autogenous control on its own expression level due to overlapping regulatory elements. Our results suggest that by down-regulating T3SS function, this fine-tuning mechanism enables P. syringae to minimise effector-mediated elicitation of plant immunity.

9.
mBio ; 8(1)2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28119474

RESUMEN

The type III secretion system (T3SS) is a principal virulence determinant of the model bacterial plant pathogen Pseudomonas syringae T3SS effector proteins inhibit plant defense signaling pathways in susceptible hosts and elicit evolved immunity in resistant plants. The extracytoplasmic function sigma factor HrpL coordinates the expression of most T3SS genes. Transcription of hrpL is dependent on sigma-54 and the codependent enhancer binding proteins HrpR and HrpS for hrpL promoter activation. hrpL is oriented adjacently to and divergently from the HrpL-dependent gene hrpJ, sharing an intergenic upstream regulatory region. We show that association of the RNA polymerase (RNAP)-HrpL complex with the hrpJ promoter element imposes negative autogenous control on hrpL transcription in P. syringae pv. tomato DC3000. The hrpL promoter was upregulated in a ΔhrpL mutant and was repressed by plasmid-borne hrpL In a minimal Escherichia coli background, the activity of HrpL was sufficient to achieve repression of reconstituted hrpL transcription. This repression was relieved if both the HrpL DNA-binding function and the hrp-box sequence of the hrpJ promoter were compromised, implying dependence upon the hrpJ promoter. DNA-bound RNAP-HrpL entirely occluded the HrpRS and partially occluded the integration host factor (IHF) recognition elements of the hrpL promoter in vitro, implicating inhibition of DNA binding by these factors as a cause of negative autogenous control. A modest increase in the HrpL concentration caused hypersecretion of the HrpA1 pilus protein but intracellular accumulation of later T3SS substrates. We argue that negative feedback on HrpL activity fine-tunes expression of the T3SS regulon to minimize the elicitation of plant defenses. IMPORTANCE: The United Nations Food and Agriculture Organization has warned that agriculture will need to satisfy a 50% to 70% increase in global food demand if the human population reaches 9 billion by 2050 as predicted. However, diseases caused by microbial pathogens represent a major threat to food security, accounting for over 10% of estimated yield losses in staple wheat, rice, and maize crops. Understanding the decision-making strategies employed by pathogens to coordinate virulence and to evade plant defenses is vital for informing crop resistance traits and management strategies. Many plant-pathogenic bacteria utilize the needle-like T3SS to inject virulence factors into host plant cells to suppress defense signaling. Pseudomonas syringae is an economically and environmentally devastating plant pathogen. We propose that the master regulator of its entire T3SS gene set, HrpL, downregulates its own expression to minimize elicitation of plant defenses. Revealing such conserved regulatory strategies will inform future antivirulence strategies targeting plant pathogens.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Regulación Bacteriana de la Expresión Génica , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Factor sigma/biosíntesis , Transcripción Genética , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Factor sigma/genética
10.
Methods Mol Biol ; 1276: 53-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665558

RESUMEN

Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ(54)), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ(54)-dependent gene expression.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Biología Molecular/métodos , ARN Polimerasa Sigma 54/metabolismo , Transcripción Genética/fisiología , Adenosina Trifosfatasas/química , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Cromatografía en Capa Delgada , Huella de ADN/métodos , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Técnicas In Vitro , Datos de Secuencia Molecular , ARN Polimerasa Sigma 54/química , Transactivadores/aislamiento & purificación , Factores de Transcripción/aislamiento & purificación
11.
FEMS Microbiol Lett ; 356(2): 201-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24863420

RESUMEN

Pseudomonas syringae pv. tomato DC3000, a plant pathogenic gram-negative bacterium, employs the type III secretion system (T3SS) to cause disease in tomato and Arabidopsis and to induce the hypersensitive response in nonhost plants. The expression of T3SS is regulated by the HrpL extracytoplasmic sigma factor. Expression of HrpL is controlled by transcriptional activators HrpR and HrpS and negative regulator HrpV. In this study, we analysed the organization of HrpRS and HrpV regulatory proteins and interplay between them. We identified one key residue I26 in HrpS required for repression by HrpV. Substitution of I26 in HrpS abolishes its interaction with HrpV and impairs interactions between HrpS and HrpR and the self-association of HrpS. We show that HrpS self-associates and can associate simultaneously with HrpR and HrpV. We now propose that HrpS has a central role in the assembly of the regulatory HrpRSV complex. Deletion analysis of HrpR and HrpS proteins showed that C-terminal parts of HrpR and HrpS confer determinants indispensable for their self-assembly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas syringae/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Solanum lycopersicum/microbiología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Enfermedades de las Plantas/microbiología , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Pseudomonas syringae/genética , Eliminación de Secuencia , Factores de Transcripción/genética
12.
J Mol Biol ; 426(8): 1692-710, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24434682

RESUMEN

The σ(54)-dependent transcription in bacteria requires specific activator proteins, bacterial enhancer binding protein (bEBP), members of the AAA+ (ATPases Associated with various cellular Activities) protein family. The bEBPs usually form oligomers in order to hydrolyze ATP and make open promoter complexes. The bEBP formed by HrpR and HrpS activates transcription from the σ(54)-dependent hrpL promoter responsible for triggering the Type Three Secretion System in Pseudomonas syringae pathovars. Unlike other bEBPs that usually act as homohexamers, HrpR and HrpS operate as a highly co-dependent heterohexameric complex. To understand the organization of the HrpRS complex and the HrpR and HrpS strict co-dependence, we have analyzed the interface between subunits using the random and directed mutagenesis and available crystal structures of several closely related bEBPs. We identified key residues required for the self-association of HrpR (D32, E202 and K235) with HrpS (D32, E200 and K233), showed that the HrpR D32 and HrpS K233 residues form interacting pairs directly involved in an HrpR-HrpS association and that the change in side-chain length at position 233 in HrpS affects self-association and interaction with the HrpR and demonstrated that the HrpS D32, E200 and K233 are not involved in negative regulation imposed by HrpV. We established that the equivalent residues K30, E200 and E234 in a homo-oligomeric bEBP, PspF, are required for the subunit communication and formation of an oligomeric lock that cooperates with the ATP γ-phosphate sensing PspF residue R227, providing insights into their roles in the heteromeric HrpRS co-complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Pseudomonas syringae/química , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 286(16): 14469-79, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21357417

RESUMEN

Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Prueba de Complementación Genética , Lisina/química , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/genética
14.
Nat Commun ; 2: 177, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21285955

RESUMEN

The bacterial AAA+ enhancer-binding proteins (EBPs) HrpR and HrpS (HrpRS) of Pseudomonas syringae (Ps) activate σ(54)-dependent transcription at the hrpL promoter; triggering type-three secretion system-mediated pathogenicity. In contrast with singly acting EBPs, the evolution of the strictly co-operative HrpRS pair raises questions of potential benefits and mechanistic differences this transcription control system offers. Here, we show distinct properties of HrpR and HrpS variants, indicating functional specialization of these non-redundant, tandemly arranged paralogues. Activities of HrpR, HrpS and their control proteins HrpV and HrpG from Ps pv. tomato DC3000 in vitro establish that HrpRS forms a transcriptionally active hetero-hexamer, that there is a direct negative regulatory role for HrpV through specific binding to HrpS and that HrpG suppresses HrpV. The distinct HrpR and HrpS functionalities suggest how partial paralogue degeneration has potentially led to a novel control mechanism for EBPs and indicate subunit-specific roles for EBPs in σ(54)-RNA polymerase activation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Regulación de la Expresión Génica/genética , Complejos Multiproteicos/metabolismo , Pseudomonas syringae/química , Pseudomonas syringae/patogenicidad , Factores de Transcripción/metabolismo , Western Blotting , Cromatografía en Gel , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica/fisiología , Plásmidos/genética , ARN Polimerasa Sigma 54/metabolismo , Factor sigma/metabolismo , Transducción Genética , beta-Galactosidasa
15.
Nucleic Acids Res ; 37(18): 5981-92, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692583

RESUMEN

sigma(54)-dependent transcription requires activation by bacterial enhancer binding proteins (bEBPs). bEBPs are members of the AAA+ (ATPases associated with various cellular activities) protein family and typically form hexameric structures that are crucial for their ATPase activity. The precise mechanism by which the energy derived from ATP hydrolysis is coupled to biological output has several unknowns. Here we use Escherichia coli PspF, a model bEBP involved in the transcription of stress response genes (psp operon), to study determinants of its contact features with the closed promoter complex. We demonstrate that substitution of a highly conserved phenylalanine (F85) residue within the L1 loop GAFTGA motif affects (i) the ATP hydrolysis rate of PspF, demonstrating the link between L1 and the nucleotide binding pocket; (ii) the internal organization of the hexameric ring; and (iii) sigma(54) interactions. Importantly, we provide evidence for a close relationship between F85 and the -12 DNA fork junction structure, which may contribute to key interactions during the energy coupling step and the subsequent remodelling of the Esigma(54) closed complex. The functionality of F85 is distinct from that of other GAFTGA residues, especially T86 where in contrast to F85 a clean uncoupling phenotype is observed.


Asunto(s)
Proteínas de Escherichia coli/química , Fenilalanina/química , Transactivadores/química , Activación Transcripcional , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , ADN Bacteriano/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
16.
Microbiology (Reading) ; 149(Pt 12): 3449-3459, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14663078

RESUMEN

The LysR-type transcriptional regulator (LTTR) CysB is a transcription factor in Escherichia coli cells, where as a homotetramer it binds the target promoter regions and activates the genes involved in sulphur utilization and sulphonate-sulphur metabolism, while negatively autoregulating its own transcription. The hslJ gene was found to be negatively regulated by CysB and directly correlated with novobiocin resistance of the bacterium. cysB mutants showed upregulation of the hslJ : : lacZ gene fusion and exhibited increased novobiocin resistance. In this study the hslJ transcription start point and the corresponding putative sigma(70) promoter were determined. The hslJ promoter region was defined by employing different hslJ-lacZ operon fusions, and transcription of the hslJ gene was shown to be subject to both repression imposed by the CysB regulator and direct or indirect autogenous negative control. These two regulations compete to some extent but they are not mutually exclusive. CysB acts as a direct repressor of hslJ transcription and binds the hslJ promoter region that carries the putative CysB repressor site. This CysB binding, apparently responsible for repression, is enhanced in the presence of the ligand N-acetylserine (NAS), hitherto considered to be a positive cofactor in CysB-mediated gene regulations. Interallelic complementation of characterized CysB mutants I33N and S277Ter partially restored the repression of hslJ transcription and the consequent novobiocin sensitivity, but did not complement the cysteine auxotrophy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Factores de Transcripción/metabolismo , Alelos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/genética
17.
FEMS Microbiol Lett ; 224(2): 239-46, 2003 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-12892888

RESUMEN

The cysB gene product is a LysR-type regulatory protein required for expression of the cys regulon. cysB mutants of Escherichia coli and Salmonella, along with being auxotrophs for the cysteine, exhibit increased resistance to the antibiotics novobiocin (Nov) and mecillinam. In this work, by using lambdaplacMu9 insertions creating random lacZ fusions, we identify a gene, hslJ, whose expression appeared to be increased in cysB mutants and needed for Nov resistance. Measurements of the HSLJ::lacZ gene fusion expression demonstrated that the hslJ gene is negatively regulated by CysB. In addition we observe the negative autogenous control of HslJ. When the control imposed by CysB is lifted in the cysB mutant, the elevation of Nov resistance can be achieved only in the presence of wild-type hslJ allele. A double cysB hslJ mutant restores the sensitivity to Nov. Overexpression of the wild-type HslJ protein either in a cysB(+) or a cysB(-) background increases the level of Nov resistance indicating that hslJ product is indeed involved in accomplishing this phenotype. The HSLJ::OmegaKan allele encodes the C-terminaly truncated mutant protein HslJ Q121Ter which is not functional in achieving the Nov resistance but when overexpressed induces the psp operon. Finally, we found that inactivation of hslJ does not affect the increased resistance to mecillinam in cysB mutants.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Novobiocina/farmacología , Amdinocilina/farmacología , Secuencia de Bases , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Respuesta al Choque Térmico/genética , Operón Lac , Penicilinas/farmacología , Fenotipo , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA