Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(3): 1609-1620, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37831476

RESUMEN

BACKGROUND: Despite the optimal characteristics of peat, more environmental-friendly materials are needed in the nursery sector, although these must guarantee specific quantitative and qualitative commercial standards. In the present study, we evaluated the influence of biochar and compost as peat surrogates on yield and essential oil profile of two different varieties of basil (Ocimum basilicum var. Italiano and Ocimum basilicum var. minimum). In two 50-day pot experiments, we checked the performances of biochar from pruning of urban trees and composted kitchen scraps, both mixed in different proportions with commercial peat (first experiment), and under different nitrogen (N) fertilization regimes (second experiment), in terms of plant growth and volatile compounds profile of basil. RESULTS: Total or high substitution of peat with biochar (100% and 50% v.v.) or compost (100%) resulted in seedling death a few days from transplantation, probably because the pH and electrical conductivity of the growing media were too high. Substrates with lower substitution rates (10-20%) were underperforming in terms of plant growth and color compared to pure commercial peat during the first experiment, whereas better performances were obtained by the nitrogen-fertilized mixed substrates in the second experiment, at least for one variety. We identified a total of 12 and 16 aroma compounds of basil (mainly terpenes) in the two experiments. Partial replacement of peat did not affect basil volatile organic compounds content and composition, whereas N fertilization overall decreased the concentration of these compounds. CONCLUSION: Our results support a moderate use of charred or composted materials as peat surrogates. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Compostaje , Ocimum basilicum , Aceites Volátiles , Ocimum basilicum/química , Aceites Volátiles/química , Suelo , Nitrógeno
2.
Artículo en Inglés | MEDLINE | ID: mdl-36834184

RESUMEN

Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis-gas chromatography-mass spectrometry to reveal molecular changes in SOM (0-10, 40-50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0-10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0-5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40-50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF.


Asunto(s)
Quemaduras , Incendios , Incendios Forestales , Humanos , Suelo/química , Bosques
3.
Artículo en Inglés | MEDLINE | ID: mdl-35206326

RESUMEN

The application of biochar as an organic amendment in polluted soils can facilitate their recovery by reducing the availability of contaminants. In the present work, the effect of biochar application to acid soils contaminated by heavy metal spillage is studied to assess its effect on the quantity and composition of soil organic matter (SOM), with special attention given to soil humic acids (HAs). This effect is poorly known and of great importance, as HA is one of the most active components of SOM. The field experiment was carried out in 12 field plots of fluvisols, with moderate and high contamination by trace elements (called MAS and AS, respectively), that are located in the Guadiamar Green Corridor (SW Spain), which were amended with 8 Mg·ha-1 of olive pit biochar (OB) and rice husk biochar (RB). The results indicate that 22 months after biochar application, a noticeable increase in soil water holding capacity, total organic carbon content, and soil pH were observed. The amounts of oxidisable carbon (C) and extracted HAs in the soils were not altered due to biochar addition. Thermogravimetric analyses of HAs showed an increase in the abundance of the most thermostable OM fraction of the MAS (375-650 °C), whereas the HAs of AS were enriched in the intermediate fraction (200-375 °C). Spectroscopic and chromatographic analyses indicate that the addition of biochar did not alter the composition of the organic fraction of HAs, while Cu, Fe, and as were considerably accumulated at HAs.


Asunto(s)
Contaminantes del Suelo , Oligoelementos , Carbón Orgánico/química , Contaminación Ambiental/análisis , Suelo/química , Contaminantes del Suelo/análisis , Oligoelementos/análisis
4.
Environ Pollut ; 290: 118025, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450489

RESUMEN

Biochar application to soils has become a focus of research during the last decade due to its high potential for C sequestration. Nevertheless, there is no exhaustive information on the long-term effects of biochar application in soils contaminated with trace elements. In this work, a 2-year field experiment was conducted comprising the application of different types of biochar to acidic and moderately acidic soils with high concentrations of As, Cu, Pb, Ba and Zn. In addition, representative samples of each biochar were buried in permeable bags that allowed the flow of water and microorganisms but not their physical interaction with soil aggregates. The biochars significantly adsorbed trace elements from polluted soils. However, given the high total concentration of these persistent trace elements in the soils, the application of biochars did not succeed in reducing the concentration of available metals (CaCl2 extractable fraction). After 2 years of ageing under field conditions, some degradation of the biochars from olive pit, rice husk and wood were observed. This study provides novel information concerning the biochar alterations during ageing in polluted soils, as the decrease of aryl C signal observed by 13C nuclear magnetic resonance (NMR) spectroscopy and the presence of O-containing groups shown by Fourier Transform mid-Infrared Spectroscopy (FT-IR) in aged biochar which enhanced trace elements adsorption. Scanning electron microscopy (SEM) revealed slight changes on surface morphology of aged biochar particles.


Asunto(s)
Contaminantes del Suelo , Oligoelementos , Carbón Orgánico , Suelo , Contaminantes del Suelo/análisis , Espectroscopía Infrarroja por Transformada de Fourier
5.
J Environ Manage ; 277: 111436, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038675

RESUMEN

Organic waste from greens of tomato plants, gardening substrate, rice husks and shrimp-derived chitin were pyrolyzed at 400 °C and 500 °C for 3 h, with the aim to elucidate the feasibility of using such products as replacement of peat in soilless gardening substrates. Characterization of the carbonized organic matter (COM) and the gardening substrate indicated that neither the peat nor the COMs provided the recommended levels of nutrients for the cultivation of tomato plants, although improvements could be obtained using COM/substrate mixtures. The toxicity thresholds for Zn were exceeded significantly by the COMs of the tomato greens and high boron levels were found for all the COMs except for those derived from chitin. In a 40-days pot experiment, germination and development of tomato seeds and plants (Solanum lycopersicum L.) were tested on COM/peat mixtures at 30%, 60% and 100% COM substitution rate. The lack of seed germination on the mixtures with COM from tomato greens is best explained with the high salinity of the COM. Best plant growth was obtained with COM from chitin at 60%, most likely because its high N content satisfied best the N-needs of the growing tomato plants without increasing the pH of the growing media. Moreover, an increase of water retention was evidenced for COM/substrate mixtures. Although the use of COM from chitin and rice husks showed promising results, the proposed recycling of organic waste from agriculture or fishery as soilless gardening substrate requires the development of formulations of COM/peat/and added nutrients with ready-to-use characteristics to increase its feasibility.


Asunto(s)
Oryza , Suelo , Agricultura , Jardines , Reciclaje
6.
J Environ Manage ; 260: 110137, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090833

RESUMEN

Metallic oxides and clay minerals have gained increasing interest as additives of composting due to their influence in greenhouse gas emissions reduction and their effectivity in the stabilization of carbon both in compost and soils, leading to a cleaner compost production and potentially C sequestrant amendments. In this study, wheat straw (WS) was co-composted with iron oxide and allophanic soil and their influence on WS composting and composition of the end-products was evaluated. WS compost and their humic like-substances (HS) fraction were characterized by chemical and spectroscopic analyzes. After 126 days of process, the elemental composition showed slight differences of the N content for compost and HS, where the C/N atomic ratio tended to decrease relative to the initial material (WS; ~130). This trend was more pronounced in the HS from co-composted treatments (<30). The addition of inorganic materials increased the total acidity and phenolic-OH group contents (~15 and 14 mEq g-1 respectively, iron oxide treatment) relative to the treatment without inorganic additives. Nevertheless, the FTIR and solid-state 13CNMR spectroscopy barely support the wet chemical analysis and revealed a similar final composition between all the studied compost treatments. These results suggest that the incorporation of these materials as compost additives had no major effect on the spectroscopic features of the end-products, however, critical changes of the properties such as the extractability, functionality and composition of HS were revealed by traditional methods. In conclusion, the supply of metal oxides and clays could impact the aerobic composting of WS favorizing the stabilization of certain C pools and adsorptive properties of the end-products, that is of importance in production of amendments suitable for being used in degraded and contaminated soils. Nevertheless, under the experimental conditions of our research C stabilization apparently depends of other mechanisms that still need to be elucidate.


Asunto(s)
Compostaje , Carbono , Minerales , Suelo , Triticum
7.
Waste Manag ; 105: 256-267, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088572

RESUMEN

Biochar is a pyrogenous organic material resulting from the pyrolysis of organic residues, which is attracting the interest from researchers and farmers for its potential to sequester carbon and its use as soil ameliorant. Pyrolysis conditions and feedstock determine the properties of the biochars produced. In order to understand the relationship between these variables we analysed in detail the physical, chemical and surface characteristics of biochars produced from three contrasting agronomic residues abundantly generated in South Spain, such as rice husk (RH), olive pit (OP) and pruning remains of olive trees (mainly composed of olive branches and leaves; OB), using a temperature range from 350 to 600 °C and residence times from 0.5 to 4 h. High pyrolysis temperature (600 °C) and time resulted in the greatest pH and C content in the biochars. In general, elemental composition and ash content were dependent on the type of organic waste used as feedstock. 13C Nuclear Magnetic Resonance Spectroscopy and thermal (TG-DSC) analyses showed that temperatures ≥500 °C are needed to achieve a high degree of aromatization of the chars. Micro-computed tomography and field emission scanning electron microscopy revealed that the structure of RH was preserved during the pyrolysis process, favouring a greater porosity for these biochars. These data are very useful for the production of stable biochars obtained from residual biomass, maximising the value of residual biomass resources. These biochars show physical and chemical properties, such as adequate pH, high water retention capacity or high porosity, of interest for their use as soil amendments.


Asunto(s)
Carbón Orgánico , Suelo , Biomasa , España , Temperatura , Microtomografía por Rayos X
8.
Sci Total Environ ; 698: 134321, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783462

RESUMEN

Siliceous speleothems frequently reported in volcanic caves have been traditionally interpreted as resulting from basalt weathering combined with the activity of microbial communities. A characteristic feature in lava tubes from Hawaii, Azores and Canary Islands is the occurrence of black jelly-like speleothems. Here we describe the formation process of siliceous black speleothems found in a lava tube from La Palma, Canary Islands, Spain, based on mineralogy, microscopy, light stable isotopes, analytical pyrolysis, NMR spectroscopy and chemometric analyses. The data indicate that the black speleothems are composed of a hydrated gel matrix of amorphous aluminum silicate materials containing charred vegetation and thermally degraded resins from pines or triterpenoids from Erica arborea, characteristic of the overlying laurel forest. This is the first observation of a connection between fire and speleothem chemistry from volcanic caves. We conclude that wildfires and organic matter from the surface area overlying caves may play an important role in the formation of speleothems found in La Palma and demonstrate that siliceous speleothems are potential archives for past fires.

9.
Sci Total Environ ; 706: 135682, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31784150

RESUMEN

The application of biochar as a soil amendment can increase concentrations of soil organic matter, especially water-extractable organic substances. Due to their mobility and reactivity, more studies are needed to address the potential impact of biochar water-extractable substances (BWES) on the sorption of herbicides in agricultural soils that are periodically flooded. Two paddy soils (100 and 700 years of paddy soil development), unamended or amended with raw (BC) or washed biochar (BCW), were used to test the influence of BWES on the sorption behavior of the herbicides azimsulfuron (AZ) and penoxsulam (PE). The adsorption of AZ to biochar was much stronger than that to the soils, and it was adsorbed to a much larger extent to BC than to BCW. The depletion of polar groups in the BWES from the washed biochar reduced AZ adsorption but had no effect on PE adsorption. The adsorption of AZ increased when the younger soil (P100) was amended with BC and decreased when it was amended with BCW. In P700, which has lower dissolved organic carbon (DOC) content than P100, the adsorption of AZ increased regardless of whether biochar was raw or washed. The adsorption of PE slightly decreased when P100 was amended with BC or BCW and slightly increased when P700 was amended with BC or BCW. In order to evaluate compositional differences in the biochar and BWES before and after the washing treatment, we performed solid-state 13C NMR spectroscopy of BC and BCW, and high resolution mass spectrometry of BWES. Our observations stress the importance of proper consideration of soil and biochar properties before their incorporation into paddy soils, since biochar may reduce or increase the mobility of AZ and PE depending on soil properties and time of application.


Asunto(s)
Oryza , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Herbicidas , Suelo , Agua
10.
J Environ Manage ; 251: 109567, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31569023

RESUMEN

A detailed and global quantitative assessment of the distribution of pyrogenic carbon (PyC) in soils remains unaccounted due to the current lack of unbiased methods for its routine quantification in environmental samples. Conventional oxidation with potassium dichromate has been reported as a useful approach for the determination of recalcitrant C in soils. However, its inaccuracy due to the presence of residual non-polar but still non-PyC requires additional analysis by 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, which is expensive and time consuming. The goal of this work is to examine the possibility of applying infrared (IR) spectroscopy as a potential alternative. Different soil type samples (paddy soil, Histic Humaquept, Leptosol and Cambisol) have been used. The soils were digested with potassium dichromate to determine the PyC content in environmental samples. Partial Least Squares (PLS) regression was used to build calibration models to predict PyC from IR spectra. A set of artificially produced samples rich in PyC was used as reference to observe in detail the IR bands derived from aromatic structures resistant to dichromate oxidation, representing black carbon. The results showed successful PLS forecasting of PyC in the different samples by using spectra in the 1800-400 cm-1 range. This lead to significant (P < 0.05) cross-validation coefficients for PyC, determined as the aryl C content of the oxidized residue. The Variable Importance for Projection (VIP) traces for the corresponding PLS regression models plotted in the whole IR range indicates the extent to which each IR band contributes to explain the aryl C and PyC contents. In fact, forecasting PyC in soils requires information from several IR regions. In addition to the expected IR bands corresponding to aryl C, other bands are informing about the patterns of oxygen-containing functional groups and the mineralogical composition characteristic of the soils with greater black carbon storage capacity. The VIP traces of the charred biomass samples confirm that aromatic bands (1620 and 1510 cm-1) are the most important in the prediction model for PyC-rich samples. These facts suggest that the mid-IR spectroscopy could be a potential tool to estimate the black carbon.


Asunto(s)
Carbono , Suelo , Biomasa , Análisis de los Mínimos Cuadrados , Espectrofotometría Infrarroja
11.
J Environ Manage ; 231: 1135-1144, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602238

RESUMEN

Mulching has amply proven its effectiveness to mitigate post-fire soil erosion but its impacts on soil organic matter (SOM) quality and quantity continue poorly studied. The present study addressed this knowledge gap for a eucalypt plantation in central Portugal that had been burnt and, immediately after the wildfire, mulched with 13.6 Mg ha-1 of eucalypt logging residues some five years before. This was done by performing a range of analytical techniques (elemental and isotope analyses, analytical pyrolysis and 13C NMR spectroscopy) not only on the bulk soil samples but also on their humic acids (HAs) and free organic matter (FOM) fractions. While mulching reduced soil and SOM losses with 91 and 93%, respectively, it also improved SOM quality of the topsoil, in particular in terms of HAs and FOM. At 0-4 cm depth, both HAs and FOM contents were roughly twice as high in the mulched plots as in the control plots. The effects of mulching on the molecular composition of HAs and FOM fractions, however, varied markedly. Analytical pyrolysis (Py-GC/MS) revealed that mulching had led to a noticeable accumulation of labile, aliphatic SOM constituents such as carbohydrate-derived and alkyl compounds (fatty acids and n-alkanes) but that it hardly affected the composition of HAs. Even so, solid-state 13C NMR spectroscopy showed that mulching had resulted in a relative increase in aryl C in the FOM fraction, suggesting an enhanced preservation of the pyrogenic OM. Overall, the combined use of a range of analytical techniques allowed to conclude that, five years after their application, the forest logging residues had led to a greater preservation of the fire-derived pyrogenic OM (mainly aromatic compounds) in the topsoil as well as to higher contents of SOM's most labile molecular constituents (mainly carbohydrates and n-alkyl compounds). The former reflected the reduced erosion rates, while the latter was probably due to a combination of reduced erosion rates with the additional input of fresh organic matter.


Asunto(s)
Incendios , Suelo , Bosques , Sustancias Húmicas , Portugal
12.
J Environ Manage ; 227: 117-123, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172930

RESUMEN

Surface Tension (ST) of water solutions of humic acids extracted from volcanic ash derived soils (soil humic acids, S-HA), were measured under controlled conditions of pH (13.0), temperature (25 °C) and ionic strength (NaOH 0.1M) to establish the Critical Micellar Concentration (CMC). All S-HA were characterized by elemental analysis, acid-base titration, Transmission Electronic Microscopy (TEM) micrographs, isoelectric point (IEP) and solid state 13C-NMR. After that, these humic acids were evaluated as potential biomaterials to be used in mineral flotation processes, where a series of experiments were conducted at different S-HA and molybdenite ratio (from 0.2 to 50 g ton-1) establishing the IEP of all resultant materials. The use of solid state 13C-NMR enabled the following sequence of intensity distribution areas of S-HA to be established: O/N Alkyl>Alkyl C>Aromatic C>Carboxyl. The experimental values of ST and the calculated CMC (ranging from 0.8 to 3.3 g L-1) revealed that for S-HA no relationship between the abundance groups and their behavior as surfactant materials was observed. In relation with IEP determined for all materials, the highest surface charge, which can be useful for flotation processes, was obtained with 0.2 g of S-HA per ton of molybdenite. Additionally, TEM studies confirm the formation of pseudoaggregates for all the S-HA considered. Finally, the S-HA could be considered as an alternative to chemical products and commercial humic acids materials in mineral flotation processes.


Asunto(s)
Sustancias Húmicas , Suelo/química , Tensoactivos , Minerales , Compuestos Orgánicos
13.
Sci Total Environ ; 637-638: 1187-1196, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29801212

RESUMEN

After vegetation fires, incorporation of pyrogenic organic matter (PyOM) into soil organic matter (SOM) shifts its composition toward higher aromaticity and to an increase of N-heterocyclic constituents, formerly introduced as black nitrogen (BN). To investigate the medium-term impact of these shifts on the quality of SOM and its role as an important C sink, the A horizon from soils of the fire-prone Sierra de Aznalcóllar (Southern Spain) were sampled 4 weeks and 7 years after a severe fire. The solid-state 13C and 15N nuclear magnetic resonance (NMR) spectra of the samples obtained 4 weeks after the fire indicated quick incorporation of PyOM into SOM. Correspondingly, pyrrole-type N dominated the organic N fraction. Seven years after the fire, the aryl C contribution decreased from 46% to 23% of organic C, although it was still higher at the burnt sites than in the unburnt reference soil (16%). This fast loss of PyOM may be due to erosion, transport into deeper soils or microbial decomposition. The contribution of the latter is in line with former incubation experiments with burnt soils from the same area. Comparably, in the recovered soil, BN was almost completely substituted by amide N. Studying the partitioning of PyOM among the density and particle size fractions of the soils, indicated that after medium-term recuperation, most PyOM occurred in the free and occluded particulate OM fractions (fPOM and oPOM). The low protection against microbial degradation and the low density of these fractions may explain the high PyOM losses from the studied soils either by decomposition or by transport. We suggested that formation of PyOM-soil mineral associates represents an important step for reducing losses of fire-derived charcoal due to biochemical mineralization and thus to its sequestration in soils.

14.
Sci Rep ; 8(1): 2896, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440718

RESUMEN

Pyrogenic organic matter (PyOM) is assumed to be biochemically recalcitrant, but recent studies indicated a quick decrease of PyOM in post-fire soils. Regardless erosion and abiotic degradation, microbial decomposition has been the explanation for this response, but no direct proof has been provided up to now. In the present study, we were able to demonstrate for the first time that the soil-borne fungus Fusarium oxysporum is not only colonizing the pore system of pyrochar (PyC) but is also involved in the degradation of its aromatic network. We showed that PyC not only stimulates microbial degradation of soil organic matter (SOM), but is also attacked and decomposed by microorganisms. Our observations are based on the chemical and morphological alterations of a sewage-sludge derived PyC produced at 600 °C after its amendment to a Calcic Cambisol by solid-state 13C nuclear magnetic resonance spectroscopy, analytical pyrolysis, elemental analysis, field emission scanning electron microscopy and DNA-based analysis of the isolated fungi. We showed that biofilms detected in the PyC play an essential role in the degradation process. These results are indispensable for a reliable assessment of the carbon sequestration potential of PyC in soils but also for improving global C cycling models.

15.
Sci Total Environ ; 613-614: 20-29, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28892724

RESUMEN

Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm-1/1034cm-1, that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow release fertilizer.

16.
Sci Total Environ ; 613-614: 969-976, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28946384

RESUMEN

The effects of aging on biochar (BC) properties, composition and carbon sequestration are still under debate. This study aimed at illustrating the qualitative alterations of five different BCs aged during a 24-month field experiment located in Southwest Spain. To determine the recalcitrance of each BC, physical fragmentation test, scanning electron microscopy, 13C NMR spectroscopy and CO2-respiration experiments were performed. The physical fragmentation values of all types of BC increased significantly over time at field conditions. FESEM examinations of aged BCs showed collapsed structures and the presence of entrapped soil material and microbial mats into the BC pores. The 13C NMR spectroscopy demonstrated an increase of the relative abundance of O-alkyl C and alkyl C at expenses of aromatic-C in aged BCs. The C losses of all BCs ranged from 27% to 11% of the initial C. In contrast, the nitrogen (N) content of wood-derived BCs significantly increased probably due to the sorption of nitrogen containing compounds into these highly-porous weathered chars. With the exception of that for the sewage sludge-BC, the pH of all aged BCs decreased from >9 to the soil pH, indicating a short lasting of the liming effect caused by BC addition. The respiration experiment revealed that BC recalcitrance was much lower than expected and, within the range of decades. Only wood-derived BCs significantly increased the mean residence time of the slow C pool of the Cambisol by factors between 3.4 and 7.7. Mediterranean climate conditions and the characteristics of the Cambisol used probably accelerated the microbial degradation of BCs.

17.
Sci Rep ; 7(1): 13441, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044220

RESUMEN

Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13C and 15N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13C and 15N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.


Asunto(s)
Ascomicetos/química , Melaninas/química , Ascomicetos/aislamiento & purificación , Cuevas/microbiología , Fenoles/análisis
18.
Sci Total Environ ; 572: 1414-1421, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927964

RESUMEN

Wildfire is a recurrent phenomenon in Mediterranean ecosystems and contributes to soil degradation and desertification, which are partially caused by alterations to soil organic matter (SOM). The SOM composition from a Cambisol under a Mediterranean forest affected by a wildfire is studied in detail in order to assess soil health status and better understand of soil recovery after the fire event. The soil was sampled one month and twenty-five months after the wildfire. A nearby unburnt site was taken as control soil. Soil rehabilitation actions involving heavy machinery to remove burnt vegetation were conducted sixteen months after the wildfire. Immediately after fire the SOM increased in topsoil due to inputs from charred vegetation, whereas a decrease was observed in the underlying soil layer. Twenty-five months after fire soil-pH increased in fire-affected topsoil due to the presence of ashes, a decrease in SOM content was recorded for the burnt topsoil and similar trend was observed for the water holding capacity. The pyro-chromatograms of burned soils revealed the formation of additional aromatic compounds. The thermal cracking of long-chain n-alkanes was also detected. Solid-state 13C NMR spectroscopy supported the increase of aromatic compounds in the fire-affected topsoil due to the accumulation of charcoal, whereas the deeper soil sections were not affected by the fire. Two years later, soil parameters for the unburnt and burnt sites showed comparable values. The reduction of the relative intensity in the aromatic C region of the NMR spectra indicated a decrease in the charcoal content of the topsoil. Due to the negligible slope in the sampling site, the loss of charcoal was explained by the post-fire restoration activity, degradation, leaching of pyrogenic SOM into deeper soil horizons or wind erosion. Our results support that in the Mediterranean region, fire-induced alteration of the SOM is not lasting in the long-term.

19.
Chemosphere ; 144: 879-87, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26421628

RESUMEN

Carbonaceous materials like biochars are increasingly recognized as effective sorbent materials for sequestering organic pollutants. Here, we study sorption behavior of two common hydrophobic organic contaminants 2,2',5,5'-tetrachlorobiphenyl (CB52) and phenanthrene (PHE), on biochars and other carbonaceous materials (CM) produced at a wide range of conditions and temperatures from various feedstocks. The primary aim was to establish structure-reactivity relationships responsible for the observed variation in CM and biochar sorption characteristics. CM were characterized for their elemental composition, surface area, pore size distribution, aromaticity and thermal stability. Freundlich sorption coefficients for CB52 and PHE (i.e. LogK(F,CB52) and K(F,PHE), respectively) to CM showed a variation of two to three orders of magnitude, with LogK(F,CB52) ranging from 5.12 ± 0.38 to 8.01 ± 0.18 and LogK(F,PHE) from 5.18 ± 0.09 to 7.42 ± 1.09. The highest LogK(F) values were observed for the activated CM, however, non-activated biochars produced at high temperatures (>700 °C) sorbed almost as strongly (within 0.2-0.5 Log units) as the activated ones. Sorption coefficients significantly increased with pyrolysis temperature, CM surface area and pore volume, aromaticity, and thermal stability, and decreased with H/C, O/C, (O + N)/C content. The results of our study contribute to the understanding of processes underlying HOC sorption to CM and explore the potential of CM as engineered sorbents for environmental applications.


Asunto(s)
Carbón Orgánico/química , Contaminantes Ambientales/aislamiento & purificación , Fenantrenos/aislamiento & purificación , Bifenilos Policlorados/aislamiento & purificación , Adsorción , Contaminantes Ambientales/química , Interacciones Hidrofóbicas e Hidrofílicas , Fenantrenos/química , Bifenilos Policlorados/química , Relación Estructura-Actividad , Propiedades de Superficie , Temperatura
20.
J Agric Food Chem ; 64(2): 513-27, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26693953

RESUMEN

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Asunto(s)
Carbón Orgánico/análisis , Técnicas de Química Analítica/normas , Laboratorios/normas , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...