Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 187(9): 2158-2174.e19, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38604175

RESUMEN

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.


Asunto(s)
Centriolos , Microtúbulos , Centriolos/metabolismo , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243137

RESUMEN

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Asunto(s)
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratas , Animales , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Glucosa/metabolismo , Ácidos Grasos/metabolismo
3.
Nat Commun ; 14(1): 7893, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036510

RESUMEN

Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.


Asunto(s)
Orgánulos , Imagen Individual de Molécula , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos
4.
Med Sci (Paris) ; 39(4): 351-358, 2023 Apr.
Artículo en Francés | MEDLINE | ID: mdl-37094268

RESUMEN

Most cellular imaging techniques, such as light or electron microscopy, require that the biological sample is first fixed by chemical cross-linking agents. This necessary step is also known to damage molecular nanostructures or even sub-cellular organization. To overcome this problem, another fixation approach was invented more than 40 years ago, which consists in cryo-fixing biological samples, thus allowing to preserve their native state. However, this method has been scarcely used in light microscopy due to the complexity of its implementation. In this review, we present a recently developed super-resolution method called expansion microscopy, which, when coupled with cryo-fixation, allows to visualize at a nanometric resolution the cell architecture as close as possible to its native state.


Title: L'organisation native de la cellule révélée grâce à la cryo-microscopie à expansion. Abstract: La plupart des techniques d'imagerie cellulaire, telles que la microscopie photonique ou la microscopie électronique, nécessitent que l'échantillon biologique soit préalablement fixé par des agents chimiques, une étape qui est connue pour endommager l'organisation sub-cellulaire. Pour pallier à ce problème, la cryo-fixation, inventée il y a plus de 40 ans, consiste à vitrifier les échantillons biologiques afin de préserver leur état natif. Cette méthode n'avait cependant été que très peu utilisée en microscopie photonique. Dans cette revue, nous présentons en détail la microscopie d'expansion, une technique de super-résolution développée récemment et qui, couplée à la cryo-fixation, permet de visualiser l'architecture cellulaire au plus près de son état natif.


Asunto(s)
Criopreservación , Humanos , Microscopía Electrónica , Criopreservación/métodos , Microscopía por Crioelectrón/métodos
5.
Semin Cell Dev Biol ; 137: 16-25, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896019

RESUMEN

Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.


Asunto(s)
Centriolos , Tubulina (Proteína) , Tubulina (Proteína)/genética , Centro Organizador de los Microtúbulos , Microtúbulos , Cilios
6.
J Cell Sci ; 135(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36524422

RESUMEN

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía , Proteínas de Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo
7.
EMBO J ; 41(21): e112107, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36125182

RESUMEN

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de Ciclo Celular , Centriolos , Animales , Humanos , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo , Proteínas de Unión al Calcio/metabolismo
8.
PLoS Biol ; 20(9): e3001782, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070319

RESUMEN

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.


Asunto(s)
Centriolos/metabolismo , Cilios/ultraestructura , Paramecium/metabolismo , Animales , Membrana Celular , Centriolos/química , Cilios/metabolismo , Mamíferos , Paramecium/química , Paramecium/citología
9.
PLoS Biol ; 20(6): e3001659, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658004

RESUMEN

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Asunto(s)
Endocitosis , Sinapsis , Animales , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Ratones , Neuronas/fisiología , Sinapsis/metabolismo
10.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188099

RESUMEN

Neuronal excitation imposes a high demand of ATP in neurons. Most of the ATP derives primarily from pyruvate-mediated oxidative phosphorylation, a process that relies on import of pyruvate into mitochondria occuring exclusively via the mitochondrial pyruvate carrier (MPC). To investigate whether deficient oxidative phosphorylation impacts neuron excitability, we generated a mouse strain carrying a conditional deletion of MPC1, an essential subunit of the MPC, specifically in adult glutamatergic neurons. We found that, despite decreased levels of oxidative phosphorylation and decreased mitochondrial membrane potential in these excitatory neurons, mice were normal at rest. Surprisingly, in response to mild inhibition of GABA mediated synaptic activity, they rapidly developed severe seizures and died, whereas under similar conditions the behavior of control mice remained unchanged. We report that neurons with a deficient MPC were intrinsically hyperexcitable as a consequence of impaired calcium homeostasis, which reduced M-type potassium channel activity. Provision of ketone bodies restored energy status, calcium homeostasis and M-channel activity and attenuated seizures in animals fed a ketogenic diet. Our results provide an explanation for the seizures that frequently accompany a large number of neuropathologies, including cerebral ischemia and diverse mitochondriopathies, in which neurons experience an energy deficit.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proteínas de Transporte de Anión/genética , Transporte Biológico , Calcio/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Cuerpos Cetónicos , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidación-Reducción , Pentilenotetrazol/toxicidad , Fosforilación , Convulsiones/inducido químicamente , Tamoxifeno/farmacología
11.
Nat Methods ; 19(2): 216-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35027766

RESUMEN

Cryofixation has proven to be the gold standard for efficient preservation of native cell ultrastructure compared to chemical fixation, but this approach is not widely used in fluorescence microscopy owing to implementation challenges. Here, we develop Cryo-ExM, a method that preserves native cellular organization by coupling cryofixation with expansion microscopy. This method bypasses artifacts associated with chemical fixation and its simplicity will contribute to its widespread use in super-resolution microscopy.


Asunto(s)
Criopreservación/métodos , Microscopía Fluorescente/métodos , Animales , Línea Celular , Chlamydomonas reinhardtii/citología , Criopreservación/instrumentación , Citoesqueleto , Epítopos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones
12.
Elife ; 92020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32946374

RESUMEN

Centrioles are characterized by a nine-fold arrangement of microtubule triplets held together by an inner protein scaffold. These structurally robust organelles experience strenuous cellular processes such as cell division or ciliary beating while performing their function. However, the molecular mechanisms underlying the stability of microtubule triplets, as well as centriole architectural integrity remain poorly understood. Here, using ultrastructure expansion microscopy for nanoscale protein mapping, we reveal that POC16 and its human homolog WDR90 are components of the microtubule wall along the central core region of the centriole. We further found that WDR90 is an evolutionary microtubule associated protein. Finally, we demonstrate that WDR90 depletion impairs the localization of inner scaffold components, leading to centriole structural abnormalities in human cells. Altogether, this work highlights that WDR90 is an evolutionary conserved molecular player participating in centriole architecture integrity.


Cells are made up of compartments called organelles that perform specific roles. A cylindrical organelle called the centriole is important for a number of cellular processes, ranging from cell division to movement and signaling. Each centriole contains nine blades made up of protein filaments called microtubules, which link together to form a cylinder. This well-known structure can be found in a variety of different species. Yet, it is unclear how centrioles are able to maintain this stable architecture whilst carrying out their various different cell roles. In early 2020, a group of researchers discovered a scaffold protein at the center of centrioles that helps keep the microtubule blades stable. Further investigation suggested that another protein called WDR90 may also help centrioles sustain their cylindrical shape. However, the exact role of this protein was poorly understood. To determine the role of WDR90, Steib et al. ­ including many of the researchers involved in the 2020 study ­ used a method called Ultrastructure Expansion Microscopy to precisely locate the WDR90 protein in centrioles. This revealed that WDR90 is located on the microtubule wall of centrioles in green algae and human cells grown in the lab. Further experiments showed that the protein binds directly to microtubules and that removing WDR90 from human cells causes centrioles to lose their scaffold proteins and develop structural defects. This investigation provides fundamental insights into the structure and stability of centrioles. It shows that single proteins are key components in supporting the structural integrity of organelles and shaping their overall architecture. Furthermore, these findings demonstrate how ultrastructure expansion microscopy can be used to determine the role of individual proteins within a complex structure.


Asunto(s)
Centriolos , Proteínas del Citoesqueleto , Microtúbulos , Animales , Bovinos , Línea Celular , Células Cultivadas , Centriolos/metabolismo , Centriolos/ultraestructura , Chlamydomonas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/ultraestructura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestructura
13.
Sci Adv ; 6(7): eaaz4137, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32110738

RESUMEN

The ninefold radial arrangement of microtubule triplets (MTTs) is the hallmark of the centriole, a conserved organelle crucial for the formation of centrosomes and cilia. Although strong cohesion between MTTs is critical to resist forces applied by ciliary beating and the mitotic spindle, how the centriole maintains its structural integrity is not known. Using cryo-electron tomography and subtomogram averaging of centrioles from four evolutionarily distant species, we found that MTTs are bound together by a helical inner scaffold covering ~70% of the centriole length that maintains MTTs cohesion under compressive forces. Ultrastructure Expansion Microscopy (U-ExM) indicated that POC5, POC1B, FAM161A, and Centrin-2 localize to the scaffold structure along the inner wall of the centriole MTTs. Moreover, we established that these four proteins interact with each other to form a complex that binds microtubules. Together, our results provide a structural and molecular basis for centriole cohesion and geometry.


Asunto(s)
Centriolos/química , Centriolos/metabolismo , Centriolos/ultraestructura , Chlamydomonas/metabolismo , Chlamydomonas/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Complejos Multiproteicos/metabolismo , Paramecium tetraurelia/metabolismo , Paramecium tetraurelia/ultraestructura , Unión Proteica , Combinación Trimetoprim y Sulfametoxazol/metabolismo
14.
Mol Genet Genomic Med ; 6(6): 957-965, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30308700

RESUMEN

BACKGROUND: General practitioners (GPs) have an increasing role in referring patients with putative mutation in BRCA1/2 genes for genetics consultation and for long-term follow-up of mutation carriers. METHODS: We compared the expectations of the GPs' role according to BRCA1/2 mutation carriers and to GPs themselves. RESULTS: Overall, 38% (58/152) of eligible GPs and 70% (176/252) of eligible patients were surveyed. Although 81% of GPs collected the family history, only 24% considered that they know criteria indicating genetics consultation and 39% sufficient knowledge of BRCA1/2 guidelines to answer patients' questions. Twelve% of GPs were aware of the French national guidelines. Among unsatisfied patients, 40% felt that their GP was able to answer (moderately, sufficiently, or completely) specific questions about BRCA1/2 care as compared with 81% in satisfied patients. Only 33% of GPs reported being informed directly by the geneticist about the patients' results. GPs' main expectations for their role in BRCA1/2 carrier care were psychological support and informing relatives about screening (72% and 71%, respectively), which contrasts with the perceptions of patients, who mainly requested medical advice for BRCA1/2-related care (51%). CONCLUSION: There is an important need for GP training and enhancing interactions between GPs and geneticists to improve the GP's role in BRCA1/2 screening and management.


Asunto(s)
Proteína BRCA2/genética , Neoplasias de la Mama/psicología , Médicos Generales/normas , Tamización de Portadores Genéticos/normas , Asesoramiento Genético/normas , Conocimientos, Actitudes y Práctica en Salud , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA1/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Médicos Generales/psicología , Asesoramiento Genético/psicología , Humanos , Persona de Mediana Edad , Derivación y Consulta/normas
15.
Semin Cell Dev Biol ; 74: 40-49, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28811263

RESUMEN

The endosomal sorting complex required for transport (ESCRT) is made of subcomplexes (ESCRT 0-III), crucial to membrane remodelling at endosomes, nuclear envelope and cell surface. ESCRT-III shapes membranes and in most cases cooperates with the ATPase VPS4 to mediate fission of membrane necks from the inside. The first ESCRT complexes mainly serve to catalyse the formation of ESCRT-III but can be bypassed by accessory proteins like the Alg-2 interacting protein-X (ALIX). In the nervous system, ALIX/ESCRT controls the survival of embryonic neural progenitors and later on the outgrowth and pruning of axons and dendrites, all necessary steps to establish a functional brain. In the adult brain, ESCRTs allow the endosomal turn over of synaptic vesicle proteins while stable ESCRT complexes might serve as scaffolds for the postsynaptic parts. The necessity of ESCRT for the harmonious function of the brain has its pathological counterpart, the mutations in CHMP2B of ESCRT-III giving rise to several neurodegenerative diseases.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Sistema Nervioso/metabolismo , Animales , Transporte Biológico , Humanos
16.
Sci Rep ; 7: 44767, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322231

RESUMEN

Alix (ALG-2 interacting protein X) drives deformation and fission of endosomal and cell surface membranes and thereby intervenes in diverse biological processes including cell proliferation and apoptosis. Using embryonic fibroblasts of Alix knock-out mice, we recently demonstrated that Alix is required for clathrin-independent endocytosis. Here we show that mice lacking Alix suffer from severe reduction in the volume of the brain which affects equally all regions examined. The cerebral cortex of adult animals shows normal layering but is reduced in both medio-lateral length and thickness. Alix controls brain size by regulating its expansion during two distinct developmental stages. Indeed, embryonic surface expansion of the Alix ko cortex is reduced because of the loss of neural progenitors during a transient phase of apoptosis occurring between E11.5 and E12.5. Subsequent development of the Alix ko cortex occurs normally until birth, when Alix is again required for the post-natal radial expansion of the cortex through its capacity to allow proper neurite outgrowth. The need of Alix for both survival of neural progenitor cells and neurite outgrowth is correlated with its role in clathrin-independent endocytosis in neural progenitors and at growth cones. Thus Alix-dependent, clathrin independent endocytosis is essential for controlling brain size.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Recuento de Células , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Dendritas/metabolismo , Embrión de Mamíferos/metabolismo , Endocitosis , Factores de Crecimiento de Fibroblastos/metabolismo , Conos de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microcefalia/metabolismo , Microcefalia/patología , Células-Madre Neurales/metabolismo , Tamaño de los Órganos , Transducción de Señal
17.
Sci Rep ; 6: 26986, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27244115

RESUMEN

The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Receptores de Interleucina-2/metabolismo , Aciltransferasas/genética , Animales , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Toxina del Cólera/metabolismo , Toxina del Cólera/toxicidad , Clatrina/genética , Clatrina/metabolismo , Embrión de Mamíferos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Cultivo Primario de Células , Unión Proteica , Receptores de Interleucina-2/genética , Transducción de Señal
18.
J Neurosci ; 35(7): 3155-73, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698751

RESUMEN

The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Sinapsis/fisiología , Animales , Células Cultivadas , Simulación por Computador , Dendritas/metabolismo , Dendritas/ultraestructura , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Hipocampo/citología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Mutación/genética , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/ultraestructura , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Ratas , Ratas Sprague-Dawley , Sinapsis/ultraestructura , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA