Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nutrients ; 15(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37111123

RESUMEN

BACKGROUND: Dietary (poly)phenol consumption is inversely associated with cardiovascular disease (CVD) risk in epidemiological studies, but little is known about the role of the gut microbiome in this relationship. METHODS: In 200 healthy females, aged 62.0 ± 10.0 years, from the TwinsUK cohort, 114 individual (poly)phenol metabolites were measured from spot urine using ultra-high-performance liquid chromatography-mass spectrometry. The associations between metabolites, the gut microbiome (alpha diversity and genera), and cardiovascular scores were investigated using linear mixed models adjusting age, BMI, fibre, energy intake, family relatedness, and multiple testing (FDR < 0.1). RESULTS: Significant associations were found between phenolic acid metabolites, CVD risk, and the gut microbiome. A total of 35 phenolic acid metabolites were associated with the Firmicutes phylum, while 5 metabolites were associated with alpha diversity (FDR-adjusted p < 0.05). Negative associations were observed between the atherosclerotic CVD (ASCVD) risk score and five phenolic acid metabolites, two tyrosol metabolites, and daidzein with stdBeta (95% (CI)) ranging from -0.05 (-0.09, -0.01) for 3-(2,4-dihydroxyphenyl)propanoic acid to -0.04 (-0.08, -0.003) for 2-hydroxycinnamic acid (FDR-adjusted p < 0.1). The genus 5-7N15 in the Bacteroidetes phylum was positively associated with the same metabolites, including 3-(3,5-dihydroxyphenyl)propanoic acid, 3-(2,4-dihydroxyphenyl)propanoic acid, 3-(3,4-dihydroxyphenyl)propanoic acid), 3-hydroxyphenylethanol-4-sulfate, and 4-hydroxyphenylethanol-3-sulfate)(stdBeta (95% CI): 0.23 (0.09, 0.36) to 0.28 (0.15, 0.42), FDR-adjusted p < 0.05), and negatively associated with the ASCVD score (stdBeta (95% CI): -0.05 (-0.09, -0.01), FDR-adjusted p = 0.02). Mediation analysis showed that genus 5-7N15 mediated 23.8% of the total effect of 3-(3,4-dihydroxyphenyl)propanoic acid on the ASCVD score. CONCLUSIONS: Coffee, tea, red wine, and several vegetables and fruits, especially berries, are the most abundant food sources of phenolic acids that have the strongest associations with CVD risk. We found that the gut microbiome, particularly the genus 5-7N15, partially mediates the negative association between urinary (poly)phenols and cardiovascular risk, supporting a key role of the gut microbiome in the health benefits of dietary (poly)phenols.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Femenino , Fenol , Estudios Transversales , Propionatos , Fenoles , Metaboloma , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-37023730

RESUMEN

The development of the microbiome within the human digestive tract starts at birth and continues up to approximately 3 years of age when the microbial ecosystem resembles a more adulthood-like state. The pace of colonization and diversification of the gut microbiota in the early stages of life has been linked to short- and long-term health outcomes. Characterizing optimal maturation of the ecosystem may help identifying adverse events that impair the process and also factors that support and guide it, such as diet. To date, researchers have looked at the evolution over time of gut microbiota parameters such as diversity, taxa abundance, or specific functions. A more global approach has used "microbiota age" to capture maturation trajectory through machine learning models. In this review, the use and limitations of the latest methods to capture and understand microbiota maturation will be discussed. Then the role of nutrition in directing gut microbiota maturation in early life will be described together with the challenges that limit our comprehension of the effects of diet on the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Recién Nacido , Humanos , Adulto , Tracto Gastrointestinal , Estado Nutricional , Dieta
3.
Nutrients ; 15(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986043

RESUMEN

Faecalibacterium prausnitzii (F. prausnitzii) is a bacterial taxon in the human gut with anti-inflammatory properties, and this may contribute to the beneficial effects of healthy eating habits. However, little is known about the nutrients that enhance the growth of F. prausnitzii other than simple sugars and fibers. Here, we combined dietary and microbiome data from the American Gut Project (AGP) to identify nutrients that may be linked to the relative abundance of F. prausnitzii. Using a machine learning approach in combination with univariate analyses, we identified that sugar alcohols, carbocyclic sugar, and vitamins may contribute to F. prausnitzii growth. We next explored the effects of these nutrients on the growth of two F. prausnitzii strains in vitro and observed robust and strain-dependent growth patterns on sorbitol and inositol, respectively. In the context of a complex community using in vitro fermentation, neither inositol alone nor in combinations with vitamin B exerted a significant growth-promoting effect on F. prausnitzii, partly due to high variability among the fecal microbiota community from four healthy donors. However, the fecal communities that showed an increase in F. prausnitzii on inulin also responded with at least 60% more F. prausnitzii on any of inositol containing media than control. Future nutritional studies aiming to increase the relative abundance of F. prausnitzii should explore a personalized approach accounting for strain-level genetic variations and community-level microbiome composition.


Asunto(s)
Microbiota , Complejo Vitamínico B , Humanos , Faecalibacterium prausnitzii , Inositol , Inulina
4.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323316

RESUMEN

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Asunto(s)
Bifidobacterium longum , Lactante , Niño , Femenino , Humanos , Preescolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Destete , Oligosacáridos/metabolismo , Bangladesh , Leche Humana , Heces/microbiología
6.
Nutr J ; 21(1): 13, 2022 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-35220977

RESUMEN

BACKGROUND: Estimated food records (EFR) are a common dietary assessment method. This investigation aimed to; (1) define the reporting quality of the EFR, (2) characterise acute dietary intake and eating behaviours, (3) describe diet heritability. METHODS: A total of 1974 one-day EFR were collected from 1858 participants in the TwinsUK cohort between 2012 and 2017. EFR were assessed using a six-point scoring system to determine reporting quality. The frequency and co-occurrence of food items was examined using word clouds and co-occurrence networks. The impact of eating behaviours on weight, BMI and nutrient intake were explored using mixed-effect linear regression models. Finally, diet heritability was estimated using ACE modelling. RESULTS: We observed that 75% of EFR are of acceptable reporting quality (score > 5). Black tea and semi-skimmed milk were the most consumed items, on an individual basis (respectively 8.27, 6.25%) and paired (0.21%) as co-occurring items. Breakfast consumption had a significantly (p = 5.99 × 10- 7) greater impact on energy (kcal) (mean 1874.67 (±SD 532.42)) than skipping breakfast (1700.45 (±SD 620.98)), however only length of eating window was significantly associated with body weight (kg) (effect size 0.21 (±SD 0.10), p = 0.05) and BMI (effect size 0.08 (±SD 0.04), p = 0.04) after adjustment for relevant covariates. Lastly, we reported that both length of eating window (h2 = 33%, CI 0.24; 0.41), and breakfast consumption (h2 = 11%, CI 0.02; 0.21) were weakly heritable. CONCLUSIONS: EFR describing acute dietary intake allow for eating behaviour characterisation and can supplement habitual diet intake assessments. Novel findings of heritability warrant further investigation.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Dieta , Ingestión de Alimentos/genética , Ingestión de Energía , Humanos , Reino Unido
7.
BMC Microbiol ; 22(1): 39, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114943

RESUMEN

BACKGROUND: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. RESULTS: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17 ± 0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18 ± 11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41 ± 0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30 ± 0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed than an increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. CONCLUSIONS: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal/genética , Metaboloma , Metagenoma , Probióticos/administración & dosificación , Yogur/microbiología , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estudios de Cohortes , Heces/microbiología , Femenino , Humanos , Masculino , Metabolómica/métodos , Metagenómica/métodos , Microbiota/genética , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Encuestas y Cuestionarios , Reino Unido
8.
Genome Med ; 13(1): 10, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472701

RESUMEN

Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field, approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be related to confounders associated with complexities in capturing an accurate representation of both diet and the gut microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications and limitations of these investigative approaches, and future considerations that may assist in accelerating applications. New investigations should consider improved collection of dietary data, further characterisation of mechanistic interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification of research methodologies, which consider the complexities of these interactions.


Asunto(s)
Dieta , Microbiota , Animales , Biodiversidad , Alimentos , Humanos , Modelos Biológicos
9.
Nat Genet ; 53(2): 156-165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462485

RESUMEN

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10-8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10-20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10-10 < P < 5 × 10-8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Variación Genética , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Bifidobacterium/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Humanos , Lactasa/genética , Desequilibrio de Ligamiento , Masculino , Análisis de la Aleatorización Mendeliana , Metabolismo/genética , ARN Ribosómico 16S
10.
Nat Med ; 27(2): 321-332, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432175

RESUMEN

The gut microbiome is shaped by diet and influences host metabolism; however, these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of 1,203 gut microbiomes from 1,098 individuals enrolled in the Personalised Responses to Dietary Composition Trial (PREDICT 1) study, whose detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements were available. We found many significant associations between microbes and specific nutrients, foods, food groups and general dietary indices, which were driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were reproducible across external publicly available cohorts and in agreement with circulating blood metabolites that are indicators of cardiovascular disease risk. While some microbes, such as Prevotella copri and Blastocystis spp., were indicators of favorable postprandial glucose metabolism, overall microbiome composition was predictive for a large panel of cardiometabolic blood markers including fasting and postprandial glycemic, lipemic and inflammatory indices. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favorable cardiometabolic and postprandial markers, indicating that our large-scale resource can potentially stratify the gut microbiome into generalizable health levels in individuals without clinically manifest disease.


Asunto(s)
Microbioma Gastrointestinal/genética , Metagenoma/genética , Microbiota/genética , Obesidad/microbiología , Adulto , Biomarcadores/metabolismo , Blastocystis/genética , Glucemia/metabolismo , Niño , Dieta/efectos adversos , Ayuno/metabolismo , Conducta Alimentaria , Femenino , Microbiología de Alimentos , Glucosa/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Periodo Posprandial/genética , Prevotella/genética , Prevotella/aislamiento & purificación
11.
Int J Epidemiol ; 50(2): 675-684, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33354722

RESUMEN

BACKGROUND: Diet quality is a risk factor for chronic disease and mortality. Differential DNA methylation across the epigenome has been associated with chronic disease risk. Whether diet quality is associated with differential methylation is unknown. This study assessed whether diet quality was associated with differential DNA methylation measured across 445 548 loci in the Women's Health Initiative (WHI) and the TwinsUK cohort. DESIGN: The discovery cohort consisted of 4355 women from the WHI. The replication cohort consisted of 571 mono- and dizygotic twins from the TwinsUK cohort. DNA methylation was measured in whole blood using the Illumina Infinium HumanMethylation450 Beadchip. Diet quality was assessed using the Alternative Healthy Eating Index 2010 (AHEI-2010). A meta-analysis, stratified by study cohort, was performed using generalized linear models that regressed methylation on AHEI-2010, adjusting for cell composition, chip number and location, study characteristics, principal components of genetic relatedness, age, smoking status, race/ethnicity and body mass index (BMI). Statistical significance was defined as a false discovery rate < 0.05. Significant sites were tested for replication in the TwinsUK cohort, with significant replication defined by P < 0.05 and a consistent direction. RESULTS: Diet quality was significantly associated with differential DNA methylation at 428 cytosine-phosphate-guanine (CpG) sites in the discovery cohort. A total of 24 CpG sites were consistent with replication in the TwinsUK cohort, more than would be expected by chance (P = 2.7x10-4), with one site replicated in both the blood and adipose tissue (cg16379999 located in the body of SEL1L). CONCLUSIONS: Diet quality was associated with methylation at 24 CpG sites, several of which have been associated with adiposity, inflammation and dysglycaemia. These findings may provide insight into pathways through which diet influences chronic disease.


Asunto(s)
Epigénesis Genética , Epigenoma , Islas de CpG/genética , Metilación de ADN , Dieta , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Proteínas , Salud de la Mujer
12.
Gut Microbes ; 13(1): 1-11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33382352

RESUMEN

Prebiotics are compounds in food that benefit health via affecting the gut microbiome. Omega-3 fatty acids have been associated with differences in gut microbiome composition and are widely accepted to have health benefits, although recent large trials have been inconclusive. We carried out a 6-week dietary intervention comparing the effects of daily supplementation with 500 mg of omega-3 versus 20 g of a well-characterized prebiotic, inulin. Inulin supplementation resulted in large increases in Bifidobacterium and Lachnospiraceae. In contrast, omega-3 supplementation resulted in significant increases in Coprococcus spp. and Bacteroides spp, and significant decreases in the fatty-liver associated Collinsella spp. On the other hand, similar to the results with inulin supplementation which resulted in significant increases in butyrate, iso-valerate, and iso-butyrate (p < .004), omega-3 supplementation resulted in significant increases in iso-butyrate and isovalerate (p < .002) and nearly significant increases in butyrate (p < .053). Coprococcus, which was significantly increased post-supplementation with omega-3, was found to be positively associated with iso-butyric acid (Beta (SE) = 0.69 (0.02), P = 1.4 x 10-3) and negatively associated with triglyceride-rich lipoproteins such as VLDL (Beta (SE) = -0.381 (0.01), P = .001) and VLDL-TG (Beta (SE) = -0.372 (0.04), P = .001) after adjusting for confounders. Dietary omega-3 alters gut microbiome composition and some of its cardiovascular effects appear to be potentially mediated by its effect on gut microbial fermentation products indicating that it may be a prebiotic nutrient.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Prebióticos , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Índice de Masa Corporal , Ácidos Grasos/sangre , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inulina/administración & dosificación , Inulina/farmacología , Lípidos/sangre , Masculino , Persona de Mediana Edad , Prebióticos/administración & dosificación
13.
Nature ; 588(7836): 135-140, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177712

RESUMEN

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.


Asunto(s)
Dieta , Microbioma Gastrointestinal/fisiología , Metaboloma/genética , Suero/metabolismo , Adulto , Pan , Estudios de Cohortes , Femenino , Voluntarios Sanos , Humanos , Estilo de Vida , Aprendizaje Automático , Masculino , Metabolómica , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Oxigenasas/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Estaciones del Año
14.
Sci Total Environ ; 739: 139697, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758933

RESUMEN

Tap water composition has been widely linked to differences in human health, however the biological pathways underlying this association are less clearly defined. We provide the first investigation of the potential for the gut microbiota to mediate this association. Tap water samples and drinking habits from 85 Mono-zygotic twins with existing faecal microbiota profiles from around the UK were used to assess associations of water composition with the gut microbiome. Water composition was captured using the first 3 principle components (PCs) from multiple factor analysis of ion concentrations, additionally estimating average daily dose (ADD) of the primary three solutes contributing to its variance: chloride, sulphate and sodium. Geographic differences in water composition were assessed. We used measures of faecal microbial diversity, between-individual differences in composition and differences in taxa abundance estimated from 16S rRNA sequencing data. Differences between twin pairs were also considered. We observed significant associations of sodium ADD with microbiota diversity (Chao1), chloride, sodium and sulphate ADD with dissimilarity between samples, and significant associations for all PCs and ADD-adjusted solutes with abundances of individual microbial taxa. These results support the hypothesis that the gut microbiota could mediate the effects of tap water composition on host health, warranting further investigation into tap-water as an influencer of microbiota composition.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , ARN Ribosómico 16S , Reino Unido , Calidad del Agua
15.
Cell Host Microbe ; 28(2): 258-272.e6, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32619440

RESUMEN

Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases.


Asunto(s)
Bacterias/metabolismo , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/patología , Microbioma Gastrointestinal/fisiología , Obesidad/patología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Relojes Circadianos/fisiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/microbiología , Heces/microbiología , Microbioma Gastrointestinal/genética , Alemania/epidemiología , Humanos , Metagenoma/genética , Metagenómica/métodos , Obesidad/microbiología
16.
Gut Microbes ; 11(6): 1632-1642, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32576065

RESUMEN

Type 2 diabetes (T2D) is associated with reduced gut microbiome diversity, although the cause is unclear. Metabolites generated by gut microbes also appear to be causative factors in T2D. We therefore searched for serum metabolites predictive of gut microbiome diversity in 1018 females from TwinsUK with concurrent metabolomic profiling and microbiome composition. We generated a Microbial Metabolites Diversity (MMD) score of six circulating metabolites that explained over 18% of the variance in microbiome alpha diversity. Moreover, the MMD score was associated with a significantly lower odds of prevalent (OR[95%CI] = 0.22[0.07;0.70], P = .01) and incident T2D (HR[95%CI] = 0.31[0.11,0.90], P = .03). We replicated our results in 1522 individuals from the ARIC study (prevalent T2D: OR[95%CI] = 0.79[0.64,0.96], P = .02, incident T2D: HR[95%CI] = 0.87[0.79,0.95], P = .003). The MMD score mediated 28%[15%,94%] of the total effect of gut microbiome on T2D after adjusting for confounders. Metabolites predicting higher microbiome diversity included 3-phenylpropionate(hydrocinnamate), indolepropionate, cinnamoylglycine and 5-alpha-pregnan-3beta,20 alpha-diol monosulfate(2) of which indolepropionate and phenylpropionate have already been linked to lower incidence of T2D. Metabolites correlating with lower microbial diversity included glutarate and imidazole propionate, of which the latter has been implicated in insulin resistance. Our results suggest that the effect of gut microbiome diversity on T2D is largely mediated by microbial metabolites, which might be modifiable by diet.


Asunto(s)
Bacterias/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , Suero/química , Anciano , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estudios de Cohortes , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Suero/metabolismo
17.
Nutrients ; 12(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585900

RESUMEN

BACKGROUND: Polyphenol consumption is implicated in gut microbiome composition and improved metabolic outcomes, but it is unclear whether the effect is independent of dietary fiber. METHODS: We investigated the links between (poly)phenol intake, gut microbiome composition (16s RNA) and obesity independently of fiber intake in UK women (n = 1810) and in a small group of UK men (n = 64). RESULTS: (Poly)phenol intakes correlated with microbiome alpha diversity (Shannon Index) after adjusting for confounders and fiber intake. Moreover, flavonoid intake was significantly correlated with the abundance of Veillonella, (a genus known to improve physical performance), and stilbene intake with that of butyrate-producing bacteria (Lachnospira and Faecalibacterium). Stilbene and flavonoid intake also correlated with lower odds of prevalent obesity (Stilbenes: Odds Ratio (95% Confidence Interval) (OR(95%CI)) = 0.80 (0.73, 0.87), p = 4.90 × 10-7; Flavonoids: OR(95%CI) = 0.77 (0.65, 0.91), p = 0.002). Formal mediation analyses revealed that gut microbiome mediates ~11% of the total effect of flavonoid and stilbene intake on prevalent obesity. CONCLUSIONS: Our findings highlight the importance of (poly)phenol consumption for optimal human health.


Asunto(s)
Fibras de la Dieta/análisis , Flavonoides/análisis , Microbioma Gastrointestinal/genética , Obesidad/epidemiología , Estilbenos/análisis , Adolescente , Adulto , Anciano , Bacterias/genética , Estudios de Cohortes , Dieta/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reino Unido , Adulto Joven
18.
Twin Res Hum Genet ; 23(6): 316-321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33558003

RESUMEN

Susceptibility to infection such as SARS-CoV-2 may be influenced by host genotype. TwinsUK volunteers (n = 3261) completing the C-19 COVID-19 symptom tracker app allowed classical twin studies of COVID-19 symptoms, including predicted COVID-19, a symptom-based algorithm to predict true infection, derived from app users tested for SARS-CoV-2. We found heritability of 49% (32-64%) for delirium; 34% (20-47%) for diarrhea; 31% (8-52%) for fatigue; 19% (0-38%) for anosmia; 46% (31-60%) for skipped meals and 31% (11-48%) for predicted COVID-19. Heritability estimates were not affected by cohabiting or by social deprivation. The results suggest the importance of host genetics in the risk of clinical manifestations of COVID-19 and provide grounds for planning genome-wide association studies to establish specific genes involved in viral infectivity and the host immune response.


Asunto(s)
COVID-19/etiología , COVID-19/epidemiología , COVID-19/genética , Diarrea/etiología , Diarrea/genética , Diarrea/virología , Enfermedades en Gemelos , Fatiga/etiología , Fatiga/genética , Fatiga/virología , Humanos , Aplicaciones Móviles , Prevalencia , Autoinforme , Gemelos Dicigóticos , Gemelos Monocigóticos
20.
Nutrients ; 11(12)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766592

RESUMEN

The human gut is inhabited by trillions of microorganisms composing a dynamic ecosystem implicated in health and disease. The composition of the gut microbiota is unique to each individual and tends to remain relatively stable throughout life, yet daily transient fluctuations are observed. Diet is a key modifiable factor influencing the composition of the gut microbiota, indicating the potential for therapeutic dietary strategies to manipulate microbial diversity, composition, and stability. While diet can induce a shift in the gut microbiota, these changes appear to be temporary. Whether prolonged dietary changes can induce permanent alterations in the gut microbiota is unknown, mainly due to a lack of long-term human dietary interventions, or long-term follow-ups of short-term dietary interventions. It is possible that habitual diets have a greater influence on the gut microbiota than acute dietary strategies. This review presents the current knowledge around the response of the gut microbiota to short-term and long-term dietary interventions and identifies major factors that contribute to microbiota response to diet. Overall, further research on long-term diets that include health and microbiome measures is required before clinical recommendations can be made for dietary modulation of the gut microbiota for health.


Asunto(s)
Dietoterapia/métodos , Dieta , Duración de la Terapia , Microbioma Gastrointestinal , Ritmo Circadiano , Dieta Saludable , Humanos , Nutrientes/administración & dosificación , Prebióticos/administración & dosificación , Prebióticos/microbiología , Probióticos/administración & dosificación , Estaciones del Año , Simbióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA