Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
1.
Nanomedicine (Lond) ; : 1-17, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225145

RESUMEN

Aim: To evaluate the anti-pancreatic cancer effect of novel Tubeimoside I multifunctional liposomes combined with gemcitabine.Methods: Liposomes were prepared through the thin film hydration method, with evaluations conducted on parameters including encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential (ZP), storage stability, and release over a 7-day period. The cellular uptake rate, therapeutic efficacy in vitro and in vivo and the role of immune microenvironment modulation were evaluated.Results: The novel Tubeimoside I multifunctional liposomal exhibited good stability, significant anti-cancer activity, and immune microenvironment remodeling effects. Furthermore, it showed a safety profile.Conclusion: This study underscores the potential of Novel Tubeimoside I multifunctional liposomal as a promising treatment option for pancreatic cancer.


[Box: see text].

2.
Sci China Life Sci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39231901

RESUMEN

The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.

3.
Fish Shellfish Immunol ; 154: 109904, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276813

RESUMEN

Golden pompano (Trachinotus ovatus), a marine farmed fish, is economically valuable in China. Lysophosphatidic acid phosphatase type 6 (ACP6) is a type of histidine acid phosphatase and plays an important role in regulating host inflammatory responses and anti-cancer effects in mammals. However, its function in teleost remains unknown. The present study aimed to investigate ACP6 function in golden pompano. ACP6 from golden pompano was identified, cloned, and named TroACP6. The open reading frame of TroACP6 was 1275 bp in length, encoding 424 amino acids. The TroACP6 protein shared high sequence identity (43.32%-90.57 %) with the ACP6 of other species. It contained a histidine phosphatase domain with the active site motif "RHGART" and the catalytic dipeptide HD (histidine and aspartate). Meanwhile, TroACP6 mRNA was widely distributed in the various tissues of healthy golden pompano, with the maximum expression in the head kidney. The function of TroACP6 was analyzed both in vitro and in vivo, and the results revealed that the purified recombinant TroACP6 protein exhibited optimum phosphatase activity at pH 6.0 and 50 °C in vitro. Meanwhile, upon Edwardsiella tarda challenge, TroACP6 expression in tissues increased significantly in vivo. In addition, TroACP6 overexpression enhanced the respiratory burst activity and superoxide dismutase activity of head kidney macrophages in vivo. Furthermore, the overexpression and knockdown of TroACP6 in vivo had a significant effect on bacterial infection. In summary, the study findings indicate that TroACP6 in golden pompano is involved in host defense against bacterial infection.

4.
iScience ; 27(8): 110458, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108717

RESUMEN

Acute myeloid leukemia (AML) is highly heterogeneous, necessitating personalized prognosis prediction and treatment strategies. Many of the current patient classifications are based on molecular features. Here, we classified the primary AML patients by predicted death risk curves and investigated the survival-directly-related molecular features. We developed a deep learning model to predict 5-year continuous-time survival probabilities for each patient and converted them to death risk curves. This method captured disease progression dynamics with high temporal resolution and identified seven patient groups with distinct risk peak timing. Based on clusters of death risk curves, we identified two robust AML prognostic biomarkers and discovered a subgroup within the European LeukemiaNet (ELN) 2017 Favorable category with an extremely poor prognosis. Additionally, we developed a web tool, De novo AML Prognostic Prediction (DAPP), for individualized prognosis prediction and expression perturbation simulation. This study utilized deep learning-based continuous-time risk modeling coupled with clustering-predicted risk distributions, facilitating dissecting time-specific molecular features of disease progression.

5.
J Hazard Mater ; 478: 135505, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146587

RESUMEN

Struvite recovery shows significant potential for simultaneously recovering nitrogen (N) and phosphorus (P) from swine wastewater but is challenged by the occurrence and transformation of antibiotic residuals. Electrochemically mediated struvite precipitation with sacrificial magnesium anode (EMSP-Mg) is promising due to its automation and chemical-free merits. However, the fate of antibiotics remains underexplored. We investigated the behavior of sulfadiazine (SD), an antibiotic frequently detected but less studied than others within the EMSP-Mg system. Significantly less SD (≤ 5%) was co-precipitated with recovered struvite in EMSP-Mg than conventional chemical struvite precipitation (CSP) processes (15.0 to 50.0%). The reduced SD accumulation in struvite recovered via EMSP was associated with increased pH and electric potential differences, which likely enhanced the electrostatic repulsion between SD and struvite. In contrast, the typical strategies used in enhancing P removal in the EMSP-Mg system, including increasing the Mg/P ratio or the Mg-release rates, have shown negligible effects on SD adsorption. Furthermore, typical coexisting ions (Ca2+, Cl-, and HCO3-) inhibited SD adsorption onto recovered products. These results provide new insights into the interactions between antibiotics and struvite within the EMSP-Mg system, enhancing our understanding of antibiotic migration pathways and aiding the development of novel EMSP processes for cleaner struvite recovery.


Asunto(s)
Electrodos , Magnesio , Estruvita , Aguas Residuales , Contaminantes Químicos del Agua , Estruvita/química , Animales , Aguas Residuales/química , Magnesio/química , Porcinos , Contaminantes Químicos del Agua/química , Fósforo/química , Sulfadiazina/química , Antibacterianos/química , Compuestos de Magnesio/química , Precipitación Química , Eliminación de Residuos Líquidos/métodos
6.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121223

RESUMEN

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Asunto(s)
ADN Polimerasa III , ADN , Histonas , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleosomas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ADN/metabolismo , Replicación del ADN , Unión Proteica , ADN Polimerasa Dirigida por ADN
7.
Molecules ; 29(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202795

RESUMEN

Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.

8.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202989

RESUMEN

Phosphogypsum is a solid waste with great environmental stockpile pressure produced by the wet production of phosphoric acid. Although there are various methods to purify and utilize phosphogypsum, the means for environmentally friendly, low energy consumption, and high value-added utilization still need to be further explored. Here, CaSO4·2H2O crystal was directly purified and regulated from phosphogypsum by using the anti-solvent method. The antisolvent can be adsorbed in the c-axis direction of the crystal and further inhibit the growth rate in this direction, resulting in a change in the morphology of the crystal. By adjusting the polarity and chain length of the anti-solvent, the morphology of CaSO4·2H2O crystal can change from butterfly-like flake crystals to hexagonal prism-like crystals. When n-propanol with long chain was used as the anti-solvent, the morphology of the CaSO4·2H2O crystal showed a hexagonal prism with a specific surface area of 19.98 m2/g and a Cu2+ loading efficiency of 52.67%. The encouraging results open up new possibilities for the application of phosphogypsum.

9.
Sci Total Environ ; 946: 174463, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38964385

RESUMEN

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

10.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062956

RESUMEN

Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Sistemas de Liberación de Medicamentos/métodos , Animales , Portadores de Fármacos/química , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA