Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34416073

RESUMEN

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Dipéptidos/química , Dipéptidos/farmacocinética , Dipéptidos/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Ratones , Estructura Molecular , Ubiquitina-Proteína Ligasas/metabolismo
2.
J Med Chem ; 64(16): 12200-12227, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34387088

RESUMEN

The functions of the bromodomain and extra terminal (BET) family of proteins have been implicated in a wide range of diseases, particularly in the oncology and immuno-inflammatory areas, and several inhibitors are under investigation in the clinic. To mitigate the risk of attrition of these compounds due to structurally related toxicity findings, additional molecules from distinct chemical series were required. Here we describe the structure- and property-based optimization of the in vivo tool molecule I-BET151 toward I-BET282E, a molecule with properties suitable for progression into clinical studies.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis/tratamiento farmacológico , Imidazoles/uso terapéutico , Proteínas Nucleares/antagonistas & inhibidores , Quinolinas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Artritis/inducido químicamente , Colágeno , Cristalografía por Rayos X , Perros , Femenino , Imidazoles/síntesis química , Imidazoles/metabolismo , Masculino , Ratones , Estructura Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Quinolinas/síntesis química , Quinolinas/metabolismo , Ratas Endogámicas Lew , Ratas Wistar , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
J Med Chem ; 64(15): 10742-10771, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34232650

RESUMEN

Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype. Focusing on achieving >1000-fold selectivity for BD2 over BD1 ,while retaining favorable physical chemical properties, compound 36 was identified as being 2000-fold selective for BD2 over BD1 (Brd4 data) with >1 mg/mL solubility in FaSSIF media. 36 represents a valuable new in vivo ready molecule for the exploration of the BD2 phenotype.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Piridinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Piridinas/química , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
4.
J Med Chem ; 63(17): 9020-9044, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787145

RESUMEN

The bromodomain and extraterminal domain (BET) family of epigenetic regulators comprises four proteins (BRD2, BRD3, BRD4, BRDT), each containing tandem bromodomains. To date, small molecule inhibitors of these proteins typically bind all eight bromodomains of the family with similar affinity, resulting in a diverse range of biological effects. To enable further understanding of the broad phenotype characteristic of pan-BET inhibition, the development of inhibitors selective for individual, or sets of, bromodomains within the family is required. In this regard, we report the discovery of a potent probe molecule possessing up to 150-fold selectivity for the N-terminal bromodomains (BD1s) over the C-terminal bromodomains (BD2s) of the BETs. Guided by structural information, a specific amino acid difference between BD1 and BD2 domains was targeted for selective interaction with chemical functionality appended to the previously developed I-BET151 scaffold. Data presented herein demonstrate that selective inhibition of BD1 domains is sufficient to drive anti-inflammatory and antiproliferative effects.


Asunto(s)
Antiinflamatorios/química , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diseño de Fármacos , Factores de Transcripción/antagonistas & inhibidores , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Sitios de Unión , Proteínas de Ciclo Celular/clasificación , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Semivida , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Simulación de Dinámica Molecular , Filogenia , Dominios Proteicos , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacología , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
5.
ACS Med Chem Lett ; 11(8): 1581-1587, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832027

RESUMEN

Pan-BET inhibitors have shown profound efficacy in a number of in vivo preclinical models and have entered the clinic in oncology trials where adverse events have been reported. These inhibitors interact equipotently with the eight bromodomains of the BET family of proteins. To better understand the contribution of each domain to their efficacy and to improve from their safety profile, selective inhibitors are required. This Letter discloses the profile of GSK973, a highly selective inhibitor of the second bromodomains of the BET proteins that has undergone extensive preclinical in vitro and in vivo characterization.

6.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31904959

RESUMEN

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Bencimidazoles/química , Bencimidazoles/farmacocinética , Bencimidazoles/farmacología , Quimiocina CCL2/biosíntesis , Cristalografía por Rayos X , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , Interleucina-6/antagonistas & inhibidores , Leucocitos/efectos de los fármacos , Masculino , Ratones , Modelos Moleculares , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
7.
SLAS Discov ; 25(2): 163-175, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31875412

RESUMEN

Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.


Asunto(s)
Bioensayo , Epigénesis Genética/genética , Relación Estructura-Actividad , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Código de Histonas/genética , Humanos , Luciferasas/química
8.
J Med Chem ; 57(19): 8111-31, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25249180

RESUMEN

Through their function as epigenetic readers of the histone code, the BET family of bromodomain-containing proteins regulate expression of multiple genes of therapeutic relevance, including those involved in tumor cell growth and inflammation. BET bromodomain inhibitors have profound antiproliferative and anti-inflammatory effects which translate into efficacy in oncology and inflammation models, and the first compounds have now progressed into clinical trials. The exciting biology of the BETs has led to great interest in the discovery of novel inhibitor classes. Here we describe the identification of a novel tetrahydroquinoline series through up-regulation of apolipoprotein A1 and the optimization into potent compounds active in murine models of septic shock and neuroblastoma. At the molecular level, these effects are produced by inhibition of BET bromodomains. X-ray crystallography reveals the interactions explaining the structure-activity relationships of binding. The resulting lead molecule, I-BET726, represents a new, potent, and selective class of tetrahydroquinoline-based BET inhibitors.


Asunto(s)
Aminoquinolinas/síntesis química , Antiinflamatorios/síntesis química , Apolipoproteína A-I/metabolismo , Benzoatos/síntesis química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinolinas/síntesis química , Factores de Transcripción/antagonistas & inhibidores , Aminoquinolinas/farmacocinética , Aminoquinolinas/farmacología , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Benzoatos/farmacocinética , Benzoatos/farmacología , Proteínas de Ciclo Celular , Descubrimiento de Drogas , Humanos , Ratones , Quinolinas/farmacocinética , Quinolinas/farmacología , Relación Estructura-Actividad
9.
ChemMedChem ; 9(3): 580-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24000170

RESUMEN

Bromodomains (BRDs) are small protein domains found in a variety of proteins that recognize and bind to acetylated histone tails. This binding affects chromatin structure and facilitates the localisation of transcriptional complexes to specific genes, thereby regulating epigenetically controlled processes including gene transcription and mRNA elongation. Inhibitors of the bromodomain and extra-terminal (BET) proteins BRD2-4 and T, which prevent bromodomain binding to acetyl-modified histone tails, have shown therapeutic promise in several diseases. We report here the discovery of 1,5-naphthyridine derivatives as potent inhibitors of the BET bromodomain family with good cell activity and oral pharmacokinetic parameters. X-ray crystal structures of naphthyridine isomers have been solved and quantum mechanical calculations have been used to explain the higher affinity of the 1,5-isomer over the others. The best compounds were progressed in a mouse model of inflammation and exhibited dose-dependent anti-inflammatory pharmacology.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Naftiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Proteínas Cromosómicas no Histona , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Histonas/química , Histonas/metabolismo , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Naftiridinas/química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
10.
J Med Chem ; 56(19): 7501-15, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24015967

RESUMEN

The bromo and extra C-terminal domain (BET) family of bromodomains are involved in binding epigenetic marks on histone proteins, more specifically acetylated lysine residues. This paper describes the discovery and structure-activity relationships (SAR) of potent benzodiazepine inhibitors that disrupt the function of the BET family of bromodomains (BRD2, BRD3, and BRD4). This work has yielded a potent, selective compound I-BET762 that is now under evaluation in a phase I/II clinical trial for nuclear protein in testis (NUT) midline carcinoma and other cancers.


Asunto(s)
Antineoplásicos/farmacología , Benzodiazepinas/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Apolipoproteína A-I/biosíntesis , Benzodiazepinas/síntesis química , Benzodiazepinas/farmacocinética , Proteínas de Ciclo Celular , Perros , Epigénesis Genética , Humanos , Macaca fascicularis , Ratones , Modelos Moleculares , Permeabilidad , Estructura Terciaria de Proteína , Ratas , Estereoisomerismo , Relación Estructura-Actividad
11.
J Med Chem ; 55(2): 587-96, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22136469

RESUMEN

Bromodomains are epigenetic reader modules that regulate gene transcription through their recognition of acetyl-lysine modified histone tails. Inhibitors of this protein-protein interaction have the potential to modulate multiple diseases as demonstrated by the profound anti-inflammatory and antiproliferative effects of a recently disclosed class of BET compounds. While these compounds were discovered using phenotypic assays, here we present a highly efficient alternative approach to find new chemical templates, exploiting the abundant structural knowledge that exists for this target class. A phenyl dimethyl isoxazole chemotype resulting from a focused fragment screen has been rapidly optimized through structure-based design, leading to a sulfonamide series showing anti-inflammatory activity in cellular assays. This proof-of-principle experiment demonstrates the tractability of the BET family and bromodomain target class to fragment-based hit discovery and structure-based lead optimization.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sulfonamidas/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Citocinas/biosíntesis , Polarización de Fluorescencia , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Isoxazoles/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Modelos Moleculares , Estructura Molecular , Proteínas Nucleares/química , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Solubilidad , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Resonancia por Plasmón de Superficie , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...